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Abstract

This paper presents a high-frequency structural VAR framework for iden-

tifying oil price shocks and examining their uncertainty transmission in the

U.S. macroeconomy and financial markets. Leveraging the stylized features

of financial data — specifically, volatility clustering effectively captured by a

GARCH model — this approach achieves global identification of shocks while

allowing for volatility spillovers across them. Findings reveal that increased

variance in aggregate demand shocks increases the oil-equity price covariance,

while precautionary demand shocks, triggering heightened investor risk aver-

sion, significantly diminish this covariance. A real-time forecast error variance

decomposition further highlights that oil supply uncertainty was the primary

source of oil price forecast uncertainty from late March to early May 2020, yet it

contributed minimally during the 2022 Russian invasion of Ukraine.
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1 Introduction

Structural vector autoregressions (SVARs) have become essential tools for identify-

ing the structural shocks underlying oil price dynamics and examining their broader

implications for macroeconomic activity, financial markets, and economic and en-

vironmental policies (see Kilian and Zhou 2023 for a literature review).1 Classical

models, incorporating oil production, real crude oil prices, economic activity indi-

cators, and occasionally inventory levels, often relying on low-frequency monthly

data, have long served as standard frameworks for empirical analysis and teaching

in SVAR modeling (see Kilian and Lütkepohl 2017 for a textbook treatment). Recent

work has explored the potential of high-frequency SVARs to capture the oil market’s

dynamics with greater temporal granularity. For example, Valenti et al. (2023) uti-

lize weekly U.S. crude production and inventory data from the Energy Information

Administration (EIA) to investigate short-run fluctuations in oil prices. Extending

such analyses to even higher frequencies, such as daily data, is challenging due to

the absence of data on key indicators like production, inventories, and aggregate

economic activity. Nevertheless, daily observations of crude oil spot and futures

prices – given oil’s status as one of the most actively traded commodities – offer a

promising high-frequency data source. Gazzani et al. (2024) demonstrate that as-

set prices can provide valuable insights for real-time structural analysis, enabling a

refined examination of how different oil price shocks affect the macroeconomy and

monetary policy decisions.

This paper contributes to the nascent yet rapidly growing literature on high-

frequency SVAR models by presenting an econometric framework that provides

granular insights into oil market shocks and their time-varying volatilities as they

propagate through the U.S. economy and financial markets. Using a dataset of daily

crude oil spot and futures prices alongside stock market indices covering more than

36 years, the model not only sheds light on recent post-pandemic developments

but also allows for revisiting key historical episodes, such as the Gulf War in the

1Notable contributions to the SVAR literature on oil markets include Kilian (2008, 2009), Kilian

and Murphy (2012, 2014), Baumeister and Hamilton (2019), Braun (2023). SVAR models have been

employed to analyze the transmission and implications of oil price shocks on U.S. macroeconomic

activity (e.g., Herrera and Rangaraju 2020), inflation and inflation expectations (e.g., Kilian and Zhou

2022, Baumeister 2023, Aastveit et al. 2023), equity markets (e.g., Kilian and Park 2009), monetary

policy (e.g., Kilian and Lewis 2011), and climate policies (e.g., Herwartz et al. 2024).
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early 1990s. A core contribution lies in demonstrating the unique advantages of

high-frequency oil market models. While their granularity enables a detailed exam-

ination of market dynamics, the distinctive statistical properties of the data – such as

volatility clustering and unconditional leptokurtosis, which align with a generalized

autoregressive conditional heteroskedasticity (GARCH) structure – offer a valuable

source for identification. These characteristics, when combined with the ability to

capture volatility spillovers across equity, oil spot and futures markets, can lead

to global identification of the shocks. Going beyond identification, high-frequency

models provide a unique platform for studying the rich second-order moment dy-

namics of oil price shocks. To this end, I introduce several structural tools, including

covariance impulse response functions (CIRFs), which quantify volatility spillovers

across shocks and assess their effects on the variances and covariances of asset prices.

Furthermore, recognizing that conditional covariances reflect the accuracy of the op-

timal predictor (in the 𝐿2 sense) for oil and stock prices, I develop a time-varying

forecast error variance decomposition (FEVD), which delivers real-time insights into

the evolving sources of forecast uncertainty.

To estimate the model, I propose a quasi maximum likelihood (QML) estimator that

is straightforward to implement and does not rely on strong distributional assump-

tions. I study its asymptotic properties by demonstrating consistency and asymptotic

normality under relatively mild assumptions, while simulation exercises indicate

its favorable finite-sample performance. Additionally, I discuss several Lagrange-

multiplier (LM) and likelihood-ratio (LR) type statistics to test various competing

specifications. For the oil market model under consideration, I examine alternative

specifications, including a BEKK model and SVARs with differing volatility trans-

mission schemes, and conduct tests for the alternative causal schemes as well as

patterns of volatility spillovers. The selected benchmark model incorporates, among

other features, the influence of aggregate demand and oil supply uncertainty on the

variance of precautionary demand shock, and offers a more nuanced understanding

of transmission of oil price shocks and their volatilities.

The findings demonstrate that high-frequency financial data contains relevant in-

formation on the dynamics of oil demand and supply, allowing the identification of

three distinct oil price shocks: an aggregate demand shock, a precautionary demand

shock, and an oil supply shock. While these shocks share many features with their

low-frequency counterparts – for example, expectations about future oil demand and
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supply can exert significant influence on oil prices and macroeconomic aggregates

even in the absence of changes in current production, and oil supply shocks have

historically contributed minimally to oil price variations (e.g., Kilian and Murphy

2014, Anzuini et al. 2015) – the high-frequency approach also reveal new properties

in terms of transmission of their volatilities. Specifically, aggregate demand uncer-

tainty emerges as the primary driver of equity market volatility, whereas oil supply

uncertainty predominantly affects spot market volatility, and precautionary demand

uncertainty exerts the strongest influence on futures markets. A variance increase in

aggregate demand shocks raises the covariance between stock and oil prices, while

precautionary demand shocks, which reflect heightened economic uncertainty and

anticipated supply risks unrelated to current production, lower this covariance, re-

flecting a strong risk aversion. Precautionary demand shocks cause spot and futures

prices to rise in tandem, similar to Gazzani et al. (2024), and significantly tighten

financial conditions. The excess bond premium (EBP) from Gilchrist and Zakrajšek

(2012) rises markedly, the global factor in risky asset prices (Miranda-Agrippino

and Rey 2020) declines, and measures such as the VIX and bond spreads increase.

Heightened risk aversion also leads to stock market declines, a rise in gold futures,

and falling Treasury yields. By contrast, an unexpected oil supply shortfall triggers

an immediate decline and gradual recovery in global oil production, pushing spot

prices more than 1.5% above baseline, while futures prices adjust more modestly

and with delay, resulting in a sharp reduction of the futures-spot spread. Examin-

ing low-frequency variables further reveals that inventory drawdowns help smooth

demand and raise convenience yields, which raises the value of holding physical oil

over futures, in line with the results found in Valenti (2022).

The high-frequency structural model also provides an exceptionally granular per-

spective on sources of uncertainty perceived by markets as they compile information

to forecast oil and asset prices. Notably, the composition of forecast uncertainty

shows sizable time variation, often diverging markedly from results based on con-

ventional FEVD using shocks’ unconditional variances. For example, in early 2020,

oil supply shocks contributed minimally to the one-day-ahead FEV of oil prices (Fig-

ure 1.1). Instead, demand shocks predominantly drove forecast uncertainty, with

aggregate demand shocks temporarily accounting for approximately 44% of forecast

variance on key dates – such as Centers for Disease Control and Prevention’s (CDC)

Covid-19 warnings and subsequent Covid policy announcements – over three times
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Figure 1.1: Daily FEVD and HD for oil and stock price dynamics. First row: Panel A shows the FEVD of
crude oil spot prices, while Panel B presents conditional heteroskedastic oil price shocks (cumulated) during early
2020. Panel C displays the HD for oil prices. Key events are marked by dashed and solid lines: red dashed lines
indicate CDC’s initial Covid-19 warning (Feb. 25), the Black Monday crash (Mar. 9), and major Covid-policy
announcements (Mar. 18). Green solid lines denote significant oil market events, including intensification of
the Russia-Saudi price war (Mar. 23), and anticipation of and agreements on the historic production cut (Apr.
2, 8, 19) effective on May 1. Second row: Panels E and F display FEVDs of oil and stock prices during the first
half of 2022. Red dashed lines mark anticipation and onset of the Russian invasion of Ukraine (Feb. 5 and 24),
U.S. legislative and executive actions banning Russian oil (Mar. 1 and 8), and Chinese lockdown news fueling
recession concerns (Jul. 5). Black solid lines indicate dates of FOMC’s announcements of rate hikes. Dashed
horizontal lines in FEVD plots indicate the unconditional one-day-ahead FEV contributions of each shock.

their unconditional level. However, from late March onward, amid the Russia-Saudi

price war and rounds of negotiations culminating in a historic production cut ef-

fective May 1, the oil supply shock emerged as the dominant source of forecast

uncertainty, at times contributing as much as 91%. In contrast, during the 2022

Russian invasion of Ukraine, oil supply shocks only modestly contributed to fore-

cast uncertainty for oil prices, except in response to U.S. legislative actions banning

Russian oil imports shortly after the invasion.

Related methodological literature Identification strategies in oil market SVARs

have traditionally drawn on theoretical insights on the short-run supply and de-

mand curves, particularly assumptions about their slopes (i.e., elasticities), often

using zero or sign restrictions (e.g., Kilian 2009, Kilian and Murphy 2014, Baumeis-

ter and Hamilton 2019, Braun and Brüggemann 2023). Building on the literature

on proxy SVAR and high-frequency identification, originally developed for mon-

etary policy analysis, Känzig (2021) constructs a proxy for oil supply news shock

by employing changes in oil futures prices around OPEC announcements (see also

Kilian 2024 for discussion and references therein). Besides theory- and instrument-
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based approaches, statistical identification methods leveraging heteroskedasticity

(e.g., Lütkepohl and Netšunajev 2014, Bertsche and Braun 2022) and independence

under non-Gaussianity (e.g., Braun 2023, Hafner et al. 2024) have also been used to

identify monthly oil price shocks. Valenti et al. (2023) pursue set-identification in

their weekly model using exclusion and sign restrictions following Baumeister and

Hamilton (2019). In the daily oil market model, Gazzani et al. (2024) adopt a mixed

identification strategy, using sign and magnitude restrictions based on observed

correlation patterns between oil and stock prices combined with two narrative re-

strictions. They also construct a proxy capturing periods of marked oil price declines

alongside spikes in market volatility, using indices such as the VIX and gold prices, to

identify a forward-looking demand shock aimed at capturing shifts in expectations

and uncertainty about future global demand.

Although exploiting conditional heteroskedasticity for identification appears espe-

cially well-suited for daily oil market models, this approach has not yet been previ-

ously explored. It should be noted, however, that using conditional heteroskedas-

ticity for identification purposes has precedence dating back to King et al. (1994).

Similarly, Sentana and Fiorentini (2001) and Lanne and Saikkonen (2007) developed

identification approaches for factor models, though applications within SVAR frame-

works are less common (exceptions are Normadin and Phaneuf 2004, Bouakez and

Normandin 2010). Unlike these studies, this paper’s approach relaxes the assump-

tion of a diagonal GARCH structure, allowing volatility spillovers across shocks.

Incorporating such spillovers is particularly pertinent here, as I find substantial

evidence that uncertainty surrounding both aggregate demand and oil supply sig-

nificantly influence the volatility of the precautionary demand shock. Surprisingly,

relaxing the diagonal assumption leads to global identification, where permutations

of columns in the structural impact multiplier or the rows/columns in the parameter

matrices governing the volatility dynamics are no longer observationally equivalent.

This paper also speaks to the literature on structural multivariate GARCH (SM-

GARCH) models, from which the concept of volatility IRFs originates (Hafner and

Herwartz 2006, 2023a,b, Fengler and Polivka 2024).2 Unlike SM-GARCH mod-

2Hafner and Herwartz (2006) pioneered the development of generalized IRFs for multivariate

volatility and provided a foundational analysis of their properties. Hafner and Herwartz (2023a)

extended this framework to accommodate asymmetric SM-GARCH models, while Hafner and Her-

wartz (2023b) proposed simulation techniques for computing correlation IRFs. Recently, Fengler and
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els, which typically rely on higher-moment independence under non-Gaussianity

(Hafner et al. 2022) or proxy variables (Fengler and Polivka 2024) for identification,

the present model leverages conditional heteroskedasticity alone for identification.

Moreover, while SM-GARCH models focus on modeling the covariance dynamics of

observable variables, the GARCH structure here directly governs the law of motion

of the shocks, endowing the model parameters with structural interpretations.

Outline and notations The paper proceeds as follows. Section 2 introduces the

econometric framework for high-frequency oil market models, and Section 3 presents

empirical results. Section 4 concludes. Appendix A contains proofs of main results

and the online appendix (OA) provides additional proofs and lemmas, simulation de-

tails and further empirical results including model diagnosis and robustness check.

Throughout, ∥𝑥∥ denotes the Euclidean norm for vectors, and ∥𝐴∥ denotes the op-

erator norm for bounded linear operators, with ∥𝐴∥2 = 𝜌(𝐴′𝐴), where 𝜌(.) is the

spectral radius. For a square matrix 𝐴, |𝐴| represents its determinant. I use B(𝑥, 𝛿)
to indicate an open ball centered at 𝑥 with radius 𝛿 > 0. Conditional expectations

are defined almost surely (a.s.), ⊙ denots the Hadamard product, 1𝑁 is a 𝑁 × 1 vector

of ones.

2 Econometrics framework

2.1 The dynamic model

The dynamic model for a vector of endogenous variables 𝑦𝑡 ∈ R𝑁 is a finite order

VAR(𝑃) process. Let {F𝑡}𝑡∈N denote a sequence of increasing 𝜎-fields generated by

{𝑦𝑠 : 𝑠 ≤ 𝑡} and let 𝐿 represent the lag-operator. Apart from deterministic and

exogenous terms, the structural form is given by

𝐴(𝐿)𝑦𝑡 =
(
𝐼𝑁 −

𝑃∑︁
𝑖=1

𝐴𝑖𝐿
𝑖

)
𝑦𝑡 = 𝐵𝜉𝑡 , with E[𝜉𝑡 |F𝑡−1] = 0, E[𝜉𝑡𝜉′𝑡 |F𝑡−1] = Σ𝑡 , (2.1)

where the structural shocks in vector 𝜉𝑡 , which form a martingale difference se-

quence (MDS), are mapped to the observable system via the non-singular matrix

𝐵 and have a diagonal conditional covariance matrix Σ𝑡 with diagonal elements

𝜎𝑡 = (𝜎1𝑡 , . . . , 𝜎𝑁𝑡)′. Define the reduced-form residuals as 𝑢𝑡 = 𝐴(𝐿)𝑦𝑡 = 𝐵𝜉𝑡 . Un-

der the normalization E[Σ𝑡] = 𝐼𝑁 , the vector 𝑢𝑡 has zero mean and a non-diagonal

Polivka (2024) investigate asymptotic properties of volatility IRFs.

7



unconditional covariance matrix3

Ω := E[𝑢𝑡𝑢′𝑡] = 𝐵E[E[𝜉𝑡𝜉′𝑡 |F𝑡−1]]𝐵′ = 𝐵E[Σ𝑡]𝐵′ = 𝐵𝐵′. (2.2)

Suppose 𝑦𝑡 is causal and second-order stationary (with precise assumptions specified

later) with invertible reverse characteristic polynomial, i.e., |𝐴(𝑧) | ≠ 0 for |𝑧 | ≤ 1, it

has a Wold moving average (MA) representation:

𝑦𝑡 = Θ(𝐿)𝜉𝑡 =
∞∑︁
𝑖=0

Θ𝑖𝜉𝑡−𝑖, where Θ(𝐿) = 𝐴(1)−1𝐵. (2.3)

The structural MA representation is particularly interesting, since it traces the dy-

namic effects of structural shocks on the conditional expectation of the observable

variables through the impulse response functions (IRFs). To distinguish this concept

from the covariance impulse response functions (CIRFs) introduced later, I refer to

these as mean IRFs (MIRFs), defined as follows:

Definition 2.1. For a sequence of random vectors {𝑋𝑡+ℎ}ℎ≥0, integrable and measur-

able with respect to F𝑡−1, the MIRFs are defined as

M𝑋
𝑡+ℎ (𝜉𝑡 |F𝑡−1) := E[𝑋𝑡+ℎ |F𝑡−1, 𝜉𝑡] − E[𝑋𝑡+ℎ |F𝑡−1], 𝜉𝑡 ∈ R𝑁 , ℎ ∈ N.

MIRFs describe the path of 𝑋𝑡+ℎ expected to occur given its history, after a shock at

time point 𝑡, relative to the potential path, where 𝑋𝑡 is already at its ’steady state’

absent any current or future shock. For 𝑦𝑡 with an MA representation (2.3), the MIRF

at horizon ℎ ∈ N is given directly by the coefficient Θℎ:

M𝑦

𝑡+ℎ (𝜉
∗ |F𝑡−1) = Θℎ𝜉

∗, ∀𝑡. (2.4)

Here, 𝜉∗ ∈ R𝑁 is a particular point in the support of the distribution of 𝜉𝑡 that

represents the ’dose’ of the shock. A common choice of the dose is 𝜉∗ := 𝑒 𝑗 with 𝑒 𝑗

being the 𝑗-th column of the identity matrix 𝐼𝑁 , so the 𝑗-th column of Θℎ represents

the effect of a ’unit’ shock to the 𝑗-th structural shock, with other shocks being muted.

Notably, the MIRFs depend on both the reduced-form parameters 𝐴 𝑗 and the struc-

tural parameters in 𝐵, with Θ0 = 𝐵. Thus, the impact multipliers in 𝐵 describe the

3The imposition of unit variance for the latent shocks is made to normalize the size of the shocks

and is applied without any loss of generality. Alternative normalizations have also been proposed.

For example, one approach involves restricting the diagonal elements of matrix 𝐵 to be unity, denoted

as 𝐵†
, while allowing E[Σ𝑡 ] = Σ to have flexible diagonal elements. In this case, 𝐵 = 𝐵†Σ1/2

(see

Gouriéroux et al. 2017 and references therein for a discussion).
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contemporaneous response of 𝑦𝑡 to an exogenous change in 𝜉𝑡 . However, it is well

known that matrix 𝐵 cannot be identified from the unconditional second-moment

condition (2.2). Specifically, any 𝐵∗ = 𝐵𝑄, where 𝑄 is an orthogonal matrix, satisfies

the condition Ω = 𝐵∗𝐵∗′
equally wel.

Identifications for low-frequency oil market models often build upon economic the-

ory and institutional knowledge on price elasticity and various motives for holding

oil, which guide zero and sign restrictions, or construction of proxies. Meanwhile,

statistical identification approaches that exploit dependence of higher-order mo-

ments or time-varying volatilities have yielded valuable insights. Despite these ad-

vances, statistical identification of high-frequency models remains underexplored.

Modeling daily oil shocks as GARCH processes is particularly appealing, as high-

frequency financial asset prices exhibit well-documented empirical features (correla-

tion of squared-returns, volatility clustering, unconditional leptokurtosis) that align

well with a GARCH model. I outline the specification of GARCH shocks next.

2.2 Conditional heteroskedasticity

A strong GARCH(𝑝, 𝑞) specification for the marginal variance processes of the struc-

tural shocks is defined by

𝜉𝑡 = Σ
1/2
𝑡 𝜂𝑡 , 𝜂𝑡

𝑖𝑖𝑑∼ (0, 𝐼𝑁 ) (2.5)

𝜎𝑘,𝑡 = 𝛾𝑘0 +
𝑞∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝐺𝑘𝑛,𝑖𝜉
2

𝑛,𝑡−𝑖 +
𝑝∑︁
𝑗=1

𝑁∑︁
𝑛=1

Γ𝑘𝑛, 𝑗𝜎𝑛,𝑡− 𝑗 , 𝑘 = 1, . . . , 𝑁, (2.6)

where 𝛾𝑘0 = 1 − ∑𝑞

𝑖=1

∑𝑁
𝑛=1

𝐺𝑘𝑛,𝑖 −
∑𝑝

𝑗=1

∑𝑁
𝑛=1

Γ𝑘𝑛, 𝑗 , and 𝐺𝑘𝑛,𝑖, Γ𝑘𝑛, 𝑗 ≥ 0 for 𝑘, 𝑛 ∈
{1, . . . , 𝑁}, 𝑖, 𝑗 ∈ {1, . . . ,max(𝑝, 𝑞)}. These parameter constraints ensure that the

variances remain positive a.s. under suitable initial conditions, and satisfy the uncon-

ditional normalization E[𝜎𝑡] = 1𝑁 imposed earlier. Combined with the conditional

mean equation (2.1), the GARCH innovations imply that the conditional covariance

of the observable variables is 𝐻𝑡 := Cov[𝑦𝑡 |F𝑡−1] = 𝐵Σ𝑡𝐵′. Focusing on a GARCH(1,1)

specification, the conditional variance process can be compactly written as

𝜎𝑡 = 𝛾0 + 𝐺1(𝜉𝑡−1 ⊙ 𝜉𝑡−1) + Γ1𝜎𝑡−1, (2.7)

where 𝛾0 = (𝐼𝑁 − 𝐺1 − Γ1)1𝑁 . By allowing non-zero off-diagonal elements in the

matrices 𝐺1 and Γ1, specification (2.7) captures not only volatility clustering within
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individual shocks but also spillovers across distinct shocks. If there is sufficient het-

eroskedasticity in the latent shocks, provided that the𝑇 ×𝑁 matrix 𝑺𝑇 = (𝜎1, . . . , 𝜎𝑇 )′

of sample variance paths has full rank, the matrix 𝐵 is identified up to column

permutations and sign changes:

Lemma 2.2. Let P be a permutation matrix and D a diagonal matrix with diagonal

elements taken from {1,−1}. If rank 𝑺𝑇 = 𝑁 , then the structural impact multiplier

matrix 𝐵 in (2.1) is identified up to the set {𝐵∗
: 𝐵∗ = 𝐵PD} and coefficient matrices

𝐺𝑖, Γ 𝑗 , in (2.6) are identified up to the set {𝐺∗
𝑖

: 𝐺∗
𝑖
= P′𝐺𝑖P} and {Γ∗

𝑗
: Γ∗

𝑗
= P′Γ 𝑗P}

with 𝑖 ∈ {1, . . . , 𝑞}, 𝑗 ∈ {1, . . . , 𝑝}, respectively.

Evidently, imposing a diagonal structure on 𝐺𝑖 and Γ 𝑗 , as in Normadin and Phaneuf

(2004), Lanne and Saikkonen (2007), and Bouakez and Normandin (2010), precludes

volatility spillovers across shocks and leads only to local identification of both 𝐵 and

the GARCH parameters themselves. By contrast, allowing for non-zero off-diagonal

elements can result in global identification, with the only permissible permutation

matrix P in Lemma 2.2 being the identity matrix. A another key distinction of

the Lemma from previous results (see, e.g., Sentana and Fiorentini 2001) lies in the

structural identification of and interpretation afforded to the parameters governing

the law of motion of the variance processes. While many existing specifications

of time-varying variances, including non-parametric approaches (see Lewis 2021),

offer distinct advantages in flexibility and generality in terms of identification, vari-

ance parameters are often treated as nuisance elements. Yet, scrutinizing these

parameters can yield insights into the rich second-order dynamics of the shocks and

facilitate closed-form structural tools for analyzing volatility transmission patterns

and decomposing forecast uncertainty. I next introduce two structural devices for

studying volatility transmission in the model.

2.3 Structural analysis of uncertainty transmission

Covariance impulse response functions To quantify the effect of an innovation in

the shock variance on the subsequent covariances of a random vector of interest,

such as the structural shocks 𝜉𝑡 or the observable variables 𝑦𝑡 , I define the covariance

impulse response functions (CIRFs) as follows:

Definition 2.3. For a sequence of random vectors {𝑋𝑡+ℎ}ℎ≥1, square-integrable and
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measurable with respect to F𝑡−1, the CIRFs are defined as

V𝑋
𝑡+ℎ (𝜂𝑡 |F𝑡−1) := Cov[𝑋𝑡+ℎ |F𝑡−1, 𝜂𝑡] − Cov[𝑋𝑡+ℎ |F𝑡−1], 𝜂𝑡 ∈ R𝑁 , ℎ ∈ N+.

Analogous to the MIRFs, CIRFs measure the difference, conditional on the past,

between a shocked path of covariance and its potential path, where the covariance

remains at its ’steady state’ in the absence of any current or future volatility shocks.4

Theorem 2.4. For 𝑦𝑡 with an MA representation (2.3) and structural shock variances

following the GARCH process (2.7), the CIRF of 𝜉𝑡 at horizon ℎ ∈ N+
is given by

V𝜉

𝑡+ℎ (𝜂
∗ |F𝑡−1) =

(
(𝐺1 + Γ1)ℎ−1𝐺1Σ𝑡 [(𝜂∗ ⊙ 𝜂∗) − 1𝑁 ]1′𝑁

)
⊙ 𝐼𝑁 , (2.8)

where 𝜂∗ ∈ R𝑁 is a point in the support of distribution of 𝜂𝑡 . By setting V𝜉
𝑡 (𝜂∗ |F𝑡−1) :=

0, the CIRF of 𝑦𝑡 can be expressed as

V𝑦

𝑡+ℎ (𝜂
∗ |F𝑡−1) =

ℎ−1∑︁
𝑖=0

Θ𝑖V𝜉

𝑡+ℎ−𝑖 (𝜂
∗ |F𝑡−1)Θ′

𝑖 . (2.9)

Noting the elementary relation Σ𝑡 = (𝜎𝑡1′𝑁 ) ⊙ 𝐼𝑁 , the CIRFs of the shocks themselves

take a familiar form as in Hafner and Herwartz (2006). Specifically, at horizon ℎ = 1,

V𝜉

𝑡+1
(𝜂∗ |F𝑡−1) =

(
E

[
𝜕𝜎𝑡+1

𝜕 (𝜂𝑡 ⊙ 𝜂𝑡)

�����F𝑡−1, 𝜂𝑡 = 𝜂
∗
]

1′𝑁

)
⊙ 𝐼𝑁 , (2.10)

while CIRFs at higher horizons can be computed recursively. For the specification

in (2.7), the conditional expectation in (2.10) becomes 𝐺1Σ𝑡 [(𝜂∗ ⊙ 𝜂∗) − 1𝑁 ] and for

ℎ > 1, with diag(.) being a vector of diagonal elements of a square matrix,

diag

(
V𝜉

𝑡+ℎ (𝜂
∗ |F𝑡−1)

)
= (𝐺1 + Γ1) diag

(
V𝜉

𝑡+ℎ−1
(𝜂∗ |F𝑡−1)

)
.

Detailed derivations are provided in the proof. The second part of the Theorem

extends their results to a vector MA process. Notably, unlike MIRFs (2.4), which are

time-invariant, the CIRFs in (2.9) depend on 𝑡 through the initial conditional variance

of the underlying shocks Σ𝑡 . The deviation between the shocked and potential paths

arises if the squared variance innovation 𝜂𝑡 ⊙ 𝜂𝑡 diverges from its unconditional

4In our framework of conditional heteroskedasticity, the shocked covariance paths for 𝜉𝑡 at horizon

ℎ = 0 all begin at zero for any 𝜂𝑡 , as 𝜉𝑡 |F𝑡−1, 𝜂𝑡 = Σ
1/2
𝑡 𝜂𝑡 a.s. This complicates the interpretation of

the difference −Σ𝑡 . Therefore, ℎ = 0 is excluded from the definition, and where appropriate, we set

V 𝜉
𝑡 (𝜂𝑡 |F𝑡−1) = 0 for all 𝜂𝑡 .
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expectation 1𝑁 . A common approach is to set the shock dose at a quantile, say

99%, from the empirical distribution of 𝜂𝑡 (see, e.g., Hafner and Herwartz 2023a).

Evidently, the persistence of the covariance response is governed by the spectral

norm 𝜌(𝐺1+Γ1), and under stationarity assumptions (to be detailed later), the CIRFs

decay exponentially. Importantly, if both 𝐺1 and Γ1 were restricted to be diagonal, a

shock in the variance of the 𝑗-th component, with others fixed at unity, would only

induce responses in the 𝑗-th diagonal element of V𝜉

𝑡+1
. Variances of other shocks will

remain unaffected across all horizons.

Forecast error variance decomposition The least MSE ℎ-step forecast (ℎ ≥ 1) given

information available at time 𝑡 is the conditional expectation 𝑦𝑡,ℎ = E[𝑦𝑡+ℎ |F𝑡]. Let

𝑢𝑡,ℎ = 𝑦𝑡+ℎ − 𝑦𝑡,ℎ =
∑ℎ−1

𝑖=0
Θ𝑖𝜉𝑡+ℎ−𝑖 denote the ℎ-step forecast error, the forecast error

covariance is given by

Cov[𝑢𝑡,ℎ |F𝑡] =
ℎ−1∑︁
𝑖=0

Θ𝑖E[𝜉𝑡+ℎ−𝑖𝜉′𝑡+ℎ−𝑖 |F𝑡]Θ
′
𝑖 =

ℎ−1∑︁
𝑖=0

Θ𝑖E[Σ𝑡+ℎ−𝑖 |F𝑡]Θ′
𝑖,

where the last equality holds since, for any ℎ ≥ 1, F𝑡 is a sub-𝝈-field of F𝑡+ℎ−1, thus

E[𝜉𝑡+ℎ𝜉′𝑡+ℎ |F𝑡] = E[E[𝜉𝑡+ℎ𝜉
′
𝑡+ℎ |F𝑡 , F𝑡+ℎ−1] |F𝑡] = E[E[𝜉𝑡+ℎ𝜉′𝑡+ℎ |F𝑡+ℎ−1] |F𝑡] = E[Σ𝑡+ℎ |F𝑡] .

As shown in the proof of Theorem 2.5, the ℎ-step prediction of structural shock

variances follows the recursive relation

E[𝜎𝑡+ℎ |F𝑡] = 𝛾0 + (𝐺1 + Γ1)E[𝜎𝑡+ℎ−1 |F𝑡] = 1𝑁 + (𝐺1 + Γ1)ℎ−1(𝜎𝑡+1 − 1𝑁 ), (2.11)

where 𝜎𝑡+1 = E[𝜎𝑡+1 |F𝑡] = 𝛾0 + 𝐺1(𝜉𝑡 ⊙ 𝜉𝑡) + Γ1𝜎𝑡 . With 𝜌(𝐺1 + Γ1) < 1, the long-term

forecast error variance converges to the unconditional variance, limℎ→∞ E[𝜎𝑡+ℎ |F𝑡] =
1𝑁 . We can now derive the time-varying FEVD as follows:

Theorem 2.5. For 𝑦𝑡 with an MA representation (2.3) and structural shock variances

following the GARCH process (2.7), the contribution of the 𝑗-th shock to the ℎ-step

forecast error variance of the 𝑘-th variable, with ℎ ∈ N+
, is given by∑ℎ−1

𝑖=0
E[𝜎𝑗 ,𝑡+ℎ−𝑖 |F𝑡]𝑒′𝑘Θ𝑖𝑒 𝑗∑𝑁

𝑗=1

∑ℎ−1

𝑖=0
E[𝜎𝑗 ,𝑡+ℎ−𝑖 |F𝑡]𝑒′𝑘Θ𝑖𝑒 𝑗

, (2.12)

where E[𝜎𝑗 ,𝑡+ℎ−𝑖 |F𝑡] = 𝑒′𝑗E[𝜎𝑡+ℎ−𝑖 |F𝑡] and for 𝑖 = 0, . . . , ℎ − 1,

E[𝜎𝑡+ℎ−𝑖 |F𝑡] = 1𝑁 + (𝐺1 + Γ1)ℎ−𝑖−1(𝜎𝑡+1 − 1𝑁 ),

with 𝜎𝑡+1 = 𝛾0 + 𝐺1(𝜉𝑡 ⊙ 𝜉𝑡) + Γ1𝜎𝑡 .
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Since all elements in 𝐺1 and Γ1 are non-negative, the predictor variance positively

depends on the difference between the conditional variance of the shocks at the

forecast origin, 𝜎𝑡+1, and their unconditional variances, 1𝑁 . When the conditional

variance of the 𝑗-th shock at the forecast origin substantially exceeds one, this shock

becomes the primary source of forecast uncertainty; conversely, a shock with a

negative difference improves predictive accuracy. Thus, this real-time decomposition

identifies the key drivers of prediction error variance at any given point, offering

insights into what the market perceives as sources of uncertainty when assimilating

information to forecast oil and asset prices. Next, I describe estimation of the model.

2.4 Quasi maximum likelihood estimation

Let 𝜗 = (𝜶′, 𝜷′, 𝜙′)′ ∈ 𝛩 denote the parameter vector, where 𝜶 = vec (𝑨) with 𝑨 =

(𝐴1, . . . , 𝐴𝑃), 𝜷 = vec (𝐵), 𝜙 = vec

(
𝐺1, . . . , 𝐺𝑞, Γ1, . . . , Γ𝑝

)
. Define 𝒚 = vec (𝑦1, . . . , 𝑦𝑇 ),

𝑍𝑡 = vec (𝑦𝑡 , . . . , 𝑦𝑡−𝑃+1), 𝑍 = (𝑍0, . . . , 𝑍𝑇−1). One way to jointly estimate the reduced-

form AR coefficients 𝜶, structural parameters 𝜷, and GARCH parameters 𝜙 is to

maximize the quasi log-likelihood function based on a Gaussian conditional density

𝑓 (𝑦𝑡 |𝜗, F𝑡−1) = (2𝜋)−𝑁/2 |𝐻𝑡 (𝜷, 𝜙) |−1/2
exp

(
−1

2

𝑢′𝑡 (𝜶)𝐻−1

𝑡 (𝜷, 𝜙)𝑢𝑡 (𝜶))
)
,

where 𝑢𝑡 (𝜶) = 𝑦𝑡 − (𝑍′
𝑡−1

⊗ 𝐼𝑁 )𝜶 and 𝐻𝑡 (𝜷, 𝜙) = 𝐵(𝜷)Σ𝑡 (𝜙)𝐵(𝜷)′. The one-step QML

estimator, obtained as 𝜗̂
†
𝑇

:= argmax𝜗∈𝛩
1

𝑇

∑𝑇
𝑡=1
𝑙
†
𝑡 (𝜗), with 𝑙

†
𝑡 (𝜗) = log 𝑓 (𝑦𝑡 |𝜗, F𝑡−1), is

consistent and asymptotically normal. If 𝜂𝑡 is Gaussian, its asymptotic covariance

will attain the parametric lower bound. However, an important drawback is that the

scale of the structural shocks is unidentified. See Theorem B.1 in OA B for further

details.5 Because the scales of the shocks play a crucial role in analyzing volatility

transmission, I propose a two-step estimation procedure where the scale is identified

up to a sign flip. The ambiguity of the sign can be resolved based on whether the

analyst is interested in, for instance, an unexpected increase or decrease in oil supply.

Using the parameterization 𝐵 = Ω1/2(𝝎)𝑄(𝜚) with Ω1/2
obtained by spectral decom-

position, 𝝎 = vech (Ω) and 𝑄(𝜚) as the product of a sequence of Givens rotation

matrices, it is ensured that 𝐵(𝝎, 𝜚) is non-singular and satisfies the unconditional

5Specifically, denote 𝑊 = 𝐵−1
and 𝑤 𝑗 = 𝑒′

𝑗
𝑊 . There exists a non-zero constant 𝑐 ∈ R and 𝜷∗

, 𝜙∗

such that 𝑤 𝑗 (𝜷∗) = 𝑐𝑤 𝑗 (𝜷) and 𝜎𝑗𝑡 (𝜙∗) = 𝑐2𝜎𝑗𝑡 (𝜙) for some 𝑗 ∈ {1, . . . , 𝑁}, and 𝜗∗ = (𝜶,′ 𝜷∗′, 𝜙∗′)′ has

the same likelihood as 𝜗.
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moment condition in (2.2), as |𝑄(𝜚) | = ∥𝑄(𝜚)∥ = 1, ∀𝜚 (see OA C for further de-

tails).6 Define 𝜗 = (𝜗′𝑟 , 𝜗′𝑠)′, where 𝜗𝑟 = (𝜶′,𝝎′)′ and 𝜗𝑠 = (𝜚′, 𝜙′)′ contains the

reduced-form, structural and GARCH parameters, respectively. The first-step es-

timator of the reduced-form parameters is obtained by solving the optimization

problem 𝜗̂𝑟,𝑇 = argmax𝜗𝑟∈𝛩𝑟

1

𝑇

∑𝑇
𝑡=1
𝑔𝑡 (𝜗𝑟), where

𝑔𝑡 (𝜗𝑟) = −
(
log |Ω| + 𝑢′𝑡 (𝜶)Ω−1𝑢𝑡 (𝜶)

)
.

In the second step, 𝜗𝑠 is estimated by QML (conditional on fixed initial values) using

the log-likelihood function given by L𝑇 (𝜗𝑠 |𝜗𝑟) = − 1

𝑇

∑𝑇
𝑡=1
𝑙𝑡 (𝜗𝑠 |𝜗𝑟), where

𝑙𝑡 (𝜗𝑠 |𝜗𝑟) = log |Σ𝑡 (𝜙) | + 𝜀′𝑡 (𝜗𝑟)𝑄(𝜚)Σ−1

𝑡 (𝜙)𝑄(𝜚)′𝜀𝑡 (𝜗𝑟), (2.13)

with 𝜀𝑡 (𝜗𝑟) = Ω−1/2(𝜔) (𝑦𝑡 − (𝑍′
𝑡−1

⊗ 𝐼𝑁 )𝜶). The first-step estimator is the standard ML

estimator, with the familiar closed-form:

𝜶̂𝑇 = ((𝑍𝑍′)−1𝑍 ⊗ 𝐼𝑁 )𝒚, Ω̂𝑇 =
1

𝑇

𝑇∑︁
𝑡=1

(𝑦𝑡 − (𝑍′
𝑡−1

⊗ 𝐼𝑁 )𝜶̂𝑇 ) (𝑦𝑡 − (𝑍′
𝑡−1

⊗ 𝐼𝑁 )𝜶̂𝑇 )′, (2.14)

which is readily implemented in common software packages, making the proposed

procedure adaptable to a wide range of applications and thus particularly appeal-

ing to practitioners. Nonetheless, ignoring conditional heteroskedasticity does re-

duce the first-step estimator’s efficiency. The two-step estimator is thus defined

as 𝜗̂𝑇 = (𝜗̂′
𝑟,𝑇
𝜗̂′
𝑠,𝑇
)′ with 𝜗̂𝑟,𝑇 given by (2.14) and 𝜗̂𝑠,𝑇 = argmax𝜗𝑠∈𝛩𝑠

L𝑇 (𝜗𝑠 |𝜗̂𝑟,𝑇 ). The

asymptotic properties of 𝜗̂𝑟,𝑇 are well established and have been extensively discussed

in Lütkepohl (2005) and Brüggemann et al. (2016). Next, I discuss the asymptotic

properties of the QML estimator for the structural and GARCH parameters.

2.5 Asymptotic properties

For model 𝑦𝑡 defined in (2.1), with structural shocks 𝜉𝑡 following the GARCH process

(2.5) and (2.7), and parameter vectors as defined above, I establish consistency of the

estimator under the following assumptions:

Assumption (A1). The true parameter value 𝜗0 ∈ 𝛩 with 𝛩 ⊂ R𝑑𝜗 being a compact

subspace of R𝑑𝜗 , on which the identification condition holds.

6As also detailed in OA C, this orthogonal rotation parameterization is also advantageous arith-

metically, since it is infinitely differentiable in 𝜚, and its 𝑟-th partial derivative with respect to each

element in 𝜚 is obtained by rotating the corresponding axes by 90 degrees clockwise 𝑟 times.
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Common compactification techniques can be applied and condition rank 𝑺𝑇 = 𝑁

leads to local identification by Lemma 2.2. While global identification on 𝛩 may be

achieved by imposing mechanical restrictions (e.g., Lanne et al. 2017) or adopting

specific labelling strategies (e.g., Lewis 2021) to fix a permutation. As previously

mentioned, however, relaxing the assumption of diagonal GARCH parameters can

actually lead to global identification. Several examples illustrating this will be pro-

vided later in this section. Define 𝑁 × 𝑁2
matrix Δ𝜎 such that 𝜎𝑡 = Δ𝜎vec (Σ𝑡) and

vec (Σ𝑡) = Δ+
𝜎𝜎𝑡 , with the explicit formula and properties of Δ𝜎 discussed in OA A.

Assumption (A2). The reverse characteristic polynomial has no roots on or within

the complex unit circle, i.e., |𝐴(𝑧,𝜶) | ≠ 0, for any |𝑧 | ≤ 1 and for all 𝜶, and

sup𝜙∈𝛷 E
[
log ∥ ((𝜂𝑡 ⊙ 𝜂𝑡)′ ⊗ 𝐺1(𝜙)) Δ′

𝜎 + Γ1(𝜙)∥
]
< 0.

Since GARCH parameters are non-negative, a sufficient condition is sup𝜙∈𝛷 𝜌(𝐺1(𝜙)+
Γ1(𝜙)) < 1. When 𝐺1 and Γ1 are restricted to be diagonal, as in previous literature,

it suffices to assume 𝐺 𝑗 𝑗 ,1 + Γ 𝑗 𝑗 ,1 < 1 for all 𝑗 .

Assumption (A3). sup𝜙∈𝛷 𝜌(Γ1(𝜙)) < 1, E∥𝜂𝑡 ∥2𝑠 < ∞ for some 𝑠 > 0.

This assumption ensures that any fixed initialization of the variance process becomes

asymptotically negligible. When 𝐺1 and Γ1 are diagonal, this assumption is redun-

dant once stationarity is assumed, as all diagonal elements of Γ1 are constrained to

be less than unity. The following theorem establishes the consistency of the QML

estimator.

Theorem 2.6. Under Assumptions (A1) – (A3), as 𝑇 → ∞,

𝜗̂𝑇
𝑝
−→ 𝜗0.

Define 𝜎𝑡 := max 𝑗∈{1,...,𝑁} 𝜎𝑗 𝑡 and 𝜎𝑡 := min 𝑗∈{1,...,𝑁} 𝜎𝑗 𝑡 . Additional assumptions are

introduced to establish asymptotic normality:

Assumption (A4). The true parameter 𝜗0 ∈ interior(𝛩).

Assumption (A5). E∥𝜉𝑡 ∥6 < ∞ and sup𝜙∈𝛷 E[𝜎𝑡
𝑠 (𝜙)] < ∞ for some 𝑠 > 1.

While the existence of fourth-order moments is necessary for inference concern-

ing the reduced-form covariance 𝝎 (or any functions thereof), the slightly stronger

Assumption (A5) is required to bound derivatives of the variance processes.
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Theorem 2.7. Under Assumptions (A1) – (A5), as 𝑇 → ∞,

√
𝑇 (𝜗̂𝑠,𝑇 − 𝜗𝑠,0)

𝑑−→ N(0, 𝑉).

The detailed expression of the asymptotic covariance matrix is presented in Ap-

pendix A, where it is shown that estimation uncertainty in the reduced-form slope

parameter 𝜶 does not affect the asymptotic variance of the structural rotation and

variance parameters in the second step.

2.6 Simulation performance

To investigate the finite-sample properties of the QML estimator, a series of simula-

tion experiments is conducted. For data generation, I employ a three-dimensional

VAR(1) model with parameters calibrated based on the theoretical framework of An

and Schorfheide (2007), with structural impact multipliers (with different reduced-

form correlations and structural rotations) randomly sampled. Regarding the

GARCH parameters, I consider three alternative patterns of variance transmission:7

Type a:


∗ 0 0

∗ ∗ ∗
0 ∗ ∗

 , Type b:


∗ 0 ∗
∗ ∗ ∗
0 0 ∗

 , Type c:


∗ 0 ∗
0 ∗ ∗
∗ 0 ∗

 , (2.15)

where ∗ denotes unrestricted elements in both matrices 𝐺1 and Γ1 and are randomly

sampled. Importantly, volatility spillovers among different shocks are permitted due

to the presence of non-zero off-diagonal elements, and it can be readily verified that

no permutation P′𝐺1P or P′Γ1P replicates the transmission pattern, except when

P = 𝐼3. I explore multiple sample sizes 𝑇 and consider three distinct (centered and

standardized) distributions for the variance innovations 𝜂𝑡 : Gaussian, Student’s 𝑡,

and 𝜒2
, with various degrees of freedom. Further details on the simulation design

and performance assessment criteria are provided in OA D.1.

Estimator Table 2.1 presents the means of the estimation errors (measured as mean

squared errors, with detailed definitions in OA D.1) for all model parameters, struc-

tural shocks, their variances, and the variance innovations across 1,000 simulation

7While I focus on three specific variance transmission patterns that achieve global identification,

other configurations, such as distinct structures on 𝐺1 and Γ1, may also lead to global identification.

Importantly, this flexibility allows for economic theories tailored to specific variance transmission

schemes to be effectively leveraged for shock identification within the proposed framework. Exploring

this direction, however, extends beyond the scope of this paper and is left for future research.
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𝑇 = 2, 000 𝑇 = 8, 000

Dist Type 𝜶 𝜷 𝐺1 Γ1 {𝜉𝑡}𝑇𝑡=1
{𝜂𝑡}𝑇𝑡=1

{𝜎𝑡}𝑇𝑡=1
𝜶 𝜷 𝐺1 Γ1 {𝜉𝑡}𝑇𝑡=1

{𝜂𝑡}𝑇𝑡=1
{𝜎𝑡}𝑇𝑡=1

G
a
u

s
s
i
a
n

a 0.004 0.216 0.011 0.126 0.117 0.112 0.064 0.001 0.042 0.002 0.051 0.026 0.025 0.015

0.009 2.402 0.027 0.508 0.746 0.745 0.170 0.001 0.024 0.003 0.173 0.020 0.019 0.045

b 0.003 0.276 0.011 0.134 0.130 0.125 0.048 0.001 0.120 0.003 0.064 0.050 0.049 0.014

0.008 2.860 0.024 0.375 1.060 1.060 0.128 0.001 0.040 0.004 0.213 0.024 0.022 0.036

c 0.004 0.424 0.014 0.117 0.179 0.173 0.120 0.001 0.151 0.004 0.052 0.060 0.058 0.030

0.010 3.956 0.070 0.317 1.332 1.330 0.223 0.002 0.035 0.005 0.151 0.026 0.022 0.058

S
t
u

d
.
𝑡

a 0.004 0.263 0.014 0.128 0.130 0.124 0.107 0.001 0.105 0.004 0.062 0.046 0.045 0.029

0.009 2.866 0.043 0.425 1.136 1.124 0.339 0.002 0.037 0.006 0.192 0.026 0.022 0.086

b 0.004 0.249 0.013 0.137 0.119 0.112 0.084 0.001 0.089 0.003 0.067 0.041 0.039 0.074

0.009 1.232 0.033 0.426 0.433 0.424 0.202 0.002 0.033 0.006 0.211 0.023 0.021 0.052

c 0.004 0.358 0.015 0.121 0.160 0.153 0.135 0.001 0.110 0.004 0.055 0.048 0.046 0.064

0.011 3.622 0.039 0.321 1.272 1.268 0.412 0.002 0.037 0.007 0.170 0.027 0.022 0.112

C
h

i
-
s
q

u
a
r
e

a 0.004 0.296 0.014 0.126 0.144 0.138 0.150 0.001 0.043 0.003 0.058 0.027 0.026 0.027

0.011 3.027 0.041 0.401 1.252 1.268 0.394 0.002 0.027 0.006 0.176 0.021 0.019 0.061

b 0.004 0.330 0.014 0.133 0.148 0.142 0.078 0.001 0.112 0.004 0.064 0.050 0.049 0.021

0.009 3.552 0.037 0.366 1.295 1.288 0.215 0.002 0.032 0.007 0.181 0.022 0.021 0.054

c 0.005 0.374 0.017 0.126 0.169 0.162 0.244 0.001 0.108 0.005 0.058 0.046 0.044 0.036

0.012 3.474 0.047 0.317 1.275 1.285 0.363 0.003 0.040 0.007 0.173 0.027 0.023 0.117

Table 2.1: Estimation errors under alternative distributions for 𝜂𝑡 and GARCH specifications. Odd-numbered
(shaded) rows report the mean estimation errors (measured as element-wise mean squared errors), while
even-numbered rows report the 95%-quantiles of the empirical distribution of estimation errors across 1,000
simulation replications. The table includes results for all model parameters, structural shocks 𝜉𝑡 , their variances
𝜎𝑡 , and variance innovations 𝜂𝑡 . See OA D.1 for further details.

replications, along with the 95%-quantiles of their empirical distributions. I consider

two sample sizes: 𝑇 = 2, 000 and 𝑇 = 8, 000, approximating roughly 8 and 32 years

of daily observations (based on 250 trading days per year). In the smaller sample,

the reduced-form slope parameters in 𝜶 are estimated with good accuracy, though

the estimator for the structural impact multipliers in 𝜷 shows sizable bias, with

large biases occurring occasionally, as indicated by the high upper-quantile values.

Among the GARCH parameters, 𝐺1 is notably easier to estimate than Γ1, with the

estimation error for 𝐺1 often an order of magnitude lower than for Γ1. Although the

variance process is generally well estimated, occasional large biases appear in the

estimates for the shocks 𝜉𝑡 and 𝜂𝑡 , as indicated by the respective quantile statistics.

As the sample size increases, the estimator’s performance markedly improves across

all parameters, as evident in the results presented in the right part of the table. As

we expect from the consistency of the estimator, both the mean estimation errors

and the 95%-quantiles converge to zero. In larger samples, biases in 𝜷 are notably

reduced, and estimation errors for Γ1 also converge, further closing the gap with
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𝑇 = 2, 000 𝑇 = 8, 000 𝑇 = 32, 000

Size Power Size Power Size Power

Dist Test Alt.1 Alt.2 Alt.3 Alt.1 Alt.2 Alt.3 Alt.1 Alt.2 Alt.3

G
a
u

s
s
i
a
n T 𝐿𝑀1

𝑇
0.17/0.10/0.03 - - 0.94 0.13/0.07/0.02 - - 0.98 0.10/0.05/0.01 - - 0.99

T 𝐿𝑀2

𝑇
0.35/0.28/0.15 1.00 0.93 0.95 0.28/0.21/0.09 1.00 0.99 0.98 0.23/0.16/0.06 1.00 1.00 0.99

T 𝐿𝑀3

𝑇
0.21/0.12/0.03 1.00 1.00 0.94 0.13/0.07/0.02 1.00 1.00 0.98 0.10/0.05/0.01 1.00 1.00 0.99

T 𝐿𝑅
𝑇

0.24/0.14/0.04 - 0.98 - 0.10/0.07/0.02 - 1.00 - 0.09/0.05/0.01 - 1.00 -

S
t
u

d
.
𝑡 T 𝐿𝑀1

𝑇
0.26/0.16/0.06 - - 0.92 0.18/0.10/0.02 - - 0.98 0.13/0.07/0.02 - - 0.99

T 𝐿𝑀2

𝑇
0.48/0.40/0.26 1.00 0.95 0.94 0.33/0.25/0.14 1.00 0.99 0.98 0.26/0.20/0.09 1.00 1.00 0.99

T 𝐿𝑀3

𝑇
0.31/0.21/0.09 1.00 1.00 0.93 0.18/0.10/0.02 1.00 1.00 0.98 0.14/0.07/0.02 1.00 1.00 1.00

T 𝐿𝑅
𝑇

0.23/0.16/0.07 - 0.98 - 0.18/0.11/0.04 - 1.00 - 0.13/0.08/0.03 - 1.00 -

C
h

i
-
s
q
u

a
r
e T 𝐿𝑀1

𝑇
0.29/0.20/0.08 - - 0.93 0.16/0.10/0.03 - - 0.98 0.13/0.07/0.02 - - 0.99

T 𝐿𝑀2

𝑇
0.52/0.43/0.30 1.00 0.95 0.95 0.37/0.29/0.17 1.00 0.99 0.98 0.28/0.21/0.11 1.00 1.00 0.99

T 𝐿𝑀3

𝑇
0.36/0.25/0.11 1.00 1.00 0.94 0.19/0.12/0.04 1.00 1.00 0.98 0.14/0.08/0.01 1.00 1.00 0.99

T 𝐿𝑅
𝑇

0.19/0.13/0.07 - 0.98 - 0.18/0.11/0.04 - 1.00 - 0.14/0.09/0.03 - 1.00 -

Table 2.2: Rejection frequencies of the LR and LM tests under different distributions for 𝜂𝑡 and varying sample
sizes, based on 1,000 simulation replications. Nominal sizes under the null hypothesis are set at 0.10/0.05/0.01.
The alternatives used to evaluate test power include a VAR(2) process (Alt.1), a non-recursive causal scheme
(Alt.2), and a misspecified GARCH structure (Alt.3), with a testing size of 0.01. Further details are provided
in OA D.2.

the more stably estimated 𝐺1 parameter. Similar observations also hold for the esti-

mated shocks. In scenarios where variance innovations are drawn from leptokurtic

or skewed distributions, the estimator’s performance shows only minimal distortion,

which demonstrates robustness under non-Gaussian data. Overall, the simulation

results indicate that the proposed QML estimator exhibits favorable finite-sample

performance, with notable accuracy in estimating the structural parameters and

variance transmission patterns, in samples of moderate size.

Specification tests As a corollary of Theorem 2.7, specific parameter constraints

can be tested using the likelihood ratio (LR) test. Let 𝜗𝑠,0 denote the structural and

GARCH parameter vector under the constraint. By Wilks’ theorem, the LR test

statistic has an asymptotic 𝜒2
distribution:

T 𝐿𝑅
𝑇 = −2

(
𝑙𝑡 (𝜗𝑠,0) − 𝑙𝑡 (𝜗̂𝑠,𝑇 )

) 𝑑−→ 𝜒2(𝜈),

where 𝜈 is the number of parameters under constraint and 𝑙𝑡 (𝜗𝑠) := 𝑙𝑡 (𝜗𝑠 |𝜗𝑟,0), which

may be replaced with the consistent estimator 𝑙𝑡 (𝜗𝑠 |𝜗̂𝑟,𝑇 ). This framework allows, for

example, testing for specific causal schemes (e.g., upper/lower triangular or sym-

metric impact multiplier) through constraints on the structural rotations 𝜚. However,

the LR test cannot be directly applied to test the significance of GARCH parameters,
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as the null hypothesis places 𝜗𝑠,0 on the boundary of the parameter space, which

affects the asymptotic distribution of T 𝐿𝑅
𝑇

(see Ch. 8.3 Francq and Zakoian 2019 for

details). In such cases, the Lagrange multiplier (LM) test can be applied, which

retains a standard asymptotic 𝜒2
distribution even when the parameter lies on the

boundary:

T 𝐿𝑀1

𝑇 = 𝑇S𝐿𝑀1

𝑇 (𝜗𝑠,0)′( ˆI𝐿𝑀1

𝑇 )−1(𝜗𝑠,0)S𝐿𝑀1

𝑇 (𝜗𝑠,0)
𝑑−→ 𝜒2(𝜈),

where S𝐿𝑀1

𝑇
(𝜗𝑠,0) = 1

𝑇

∑𝑇
𝑡=1

𝜕
𝜕𝜗𝑠
𝑙𝑡 (𝜗𝑠,0) and

ˆI𝑇 (𝜗𝑠,0) is a consistent estimator of the

information matrix, e.g.,
ˆI𝐿𝑀1

𝑇
(𝜗𝑠,0) = 1

𝑇

∑𝑇
𝑡=1

𝜕
𝜕𝜗𝑠
𝑙𝑡 (𝜗𝑠,0) 𝜕

𝜕𝜗′𝑠
𝑙𝑡 (𝜗𝑠,0). Additionally, one

can consider joint LM tests involving both reduced-form and structural parameters,

allowing for constraints on 𝜗𝑟 . Denoting the parameter vector under the null as

𝜗0 = (𝜗′
𝑟,0
, 𝜗′

𝑠,0
)′, we define two versions of the LM test statistics, denoted T •

𝑇
for

• ∈ {𝐿𝑀2, 𝐿𝑀3}:

T •
𝑇 = 𝑇S•

𝑇 (𝜗0)′( ˆI•
𝑇 )−1(𝜗0)S•

𝑇 (𝜗0)
𝑑−→ 𝜒2(𝜈),

with S𝐿𝑀2

𝑇
(𝜗0) =

(
1

𝑇

∑𝑇
𝑡=1

𝜕
𝜕𝜗′𝑟
𝑔𝑡 (𝜗𝑟,0), 1

𝑇

∑𝑇
𝑡=1

𝜕
𝜕𝜗′𝑠
𝑙𝑡 (𝜗𝑠,0)

)′
and S𝐿𝑀3

𝑇
(𝜗0) =

1

𝑇

∑𝑇
𝑡=1

𝜕
𝜕𝜗
𝑙
†
𝑡 (𝜗0), ˆI•

𝑇
defined analogously. Analytical expressions for the score

functions are provided in OA D.2.

To evaluate the properties of these tests, I simulate data from the DGP described

earlier, randomly selecting a GARCH specification from the three variance transmis-

sion schemes with equal probability and adopting a recursive (i.e., lower-triangular)

causal scheme. Table 2.2 documents the rejection frequencies of these tests under

the null hypothesis, based on their asymptotic distribution and nominal sizes of 0.10,

0.05, and 0.01. While all tests exhibit elevated Type-I errors in smaller samples of

1,000 observations, the rejection frequencies align more closely with nominal sizes

as 𝑇 increases and are well-sized for 𝑇 = 32, 000. An exception is the LM test statistic

T 𝐿𝑀2

𝑇
, which tends to over-reject even in large samples. This result is expected,

as the reduced-form likelihood does not account for the GARCH effect, leading to

an underestimation of the covariance matrix. These trends hold across different

distributions for 𝜂𝑡 . To assess test power, I consider three alternative hypotheses.

First, I test whether the data follows a VAR(2) process (Alt.1) using T 𝐿𝑀2

𝑇
and T 𝐿𝑀3

𝑇
.

Next, I test against a non-recursive causal scheme (Alt.2) using the same statistics,

alongside the LR test, and finally, I test against alternative GARCH specifications

using all three LM tests (Alt.3). As indicated by the rejection frequencies (based on a
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nominal level of 0.01) in Table 2.2, all tests show favorable power across sample sizes

and distributions considered.

3 A daily structural oil market model

3.1 Financial market data and model specifications

The model includes three endogenous variables: the (log) returns of the spot price

of crude oil (ospot), U.S. stock market prices (sp), and the futures price of crude oil

(ofuture). For the spot price, I use the current price of West Texas Intermediate (WTI)

crude oil, while for the futures price, I use NYMEX WTI futures with a four-month

delivery horizon. To construct U.S. stock market returns, I extract the first principal

component from the returns of the S&P 500, NASDAQ, and Russell 2000 indices,

which captures 91% of the variation in these composites.8 The basic model structure

aligns with that of Gazzani et al. (2024). However, prices for WTI are used due to

their high liquidity ensuring arbitrage-free conditions, and their longer historical

availability, allowing for an analysis that revisits important historical episodes, such

as the Gulf War in the early 1990s. For similar reasons, I restrict the analysis to the U.S.

stock market, which, as shown later, contains substantial information on expectations

regarding future oil demand and supply that enables us to properly identify distinct

oil price shocks. The data comprise 𝑇 = 9, 056 daily observations, spanning over

36 years, from January 1, 1988, to April 5, 2024. Addressing potential data issues

related to the Covid-19 outbreak in 2020, I retain these observations instead of

excluding or down-weighting them by variance, as suggested by Lenza and Primiceri

(2022). The pandemic period coincides with notable oil market turbulence, including

some historically unprecedented events, which are essential to our analysis. As

shown later, the GARCH model effectively captures these dramatic changes in the

volatility of the variables. To control for potential fixed effects of Covid-19 policies

on the conditional means, I include the Covid-19 Stringency Index for the U.S.,

constructed by Hale et al. (2021), as an exogenous variable.9 Monthly dummies are

8Data are obtained from the EIA website and FRED, with further details on sources and data

transformations available in OA E.1. Comparable results are found when using shorter delivery

horizons, beginning with the front-month contract provided by the EIA.

9This index is a composite measure based on nine government policy indicators. Since the original

series ended in 2022, I extend it through polynomial extrapolation until the official end of the public

health emergency as declared by the WHO in early May 2023.
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Alternative model specifications

Vola. VAR0-BEKK SVAR-f SVAR-d SVAR-p-a SVAR-p-b SVAR-g-a SVAR-g-b SVAR-g-c

Scheme


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗



∗ 0 0

0 ∗ 0

0 0 ∗



∗ 0 0

0 ∗ ∗
0 ∗ ∗



∗ 0 0

∗ ∗ ∗
∗ ∗ ∗



∗ 0 0

∗ ∗ ∗
0 ∗ ∗



∗ 0 ∗
∗ ∗ ∗
0 0 ∗



∗ 0 ∗
0 ∗ ∗
∗ 0 ∗


AIC 101213.7 16381.66 13827.45 16296.56 14903.75 12586.00 12929.59 12948.32

BIC 101384.5 16531.00 13891.45 16389.00 15024.64 12692.67 13036.26 13054.99

HQ 101271.8 16432.46 13849.22 16328.00 14944.88 12622.28 12965.88 12984.60

Tests for identification Tests for causal direction

𝐻0 rank 𝑺𝑇 = 1 rank 𝑺𝑇 = 2 𝐵 symmetric

Test stat. LM1 LM2 LM3 LM1 LM2 LM3 LM (T 𝐿𝑀2

𝑇
) LR (T 𝐿𝑅

𝑇
)

623.48 (1) 863.87 (9) 861.05 (9) 522.95 (1) 522.95 (1) 522.03 (1) 968.32 (3) 3093.37 (3)

Tests for volatility spillovers

Direction None agg dem. → prec dem. oil sup. → prec dem. both shocks → prec dem. prec dem. → oil sup.

𝐻0 𝐺1, Γ1 diag. 𝐺21,1 = 0 Γ21,1 = 0 𝐺23,1 = 0 Γ23,1 = 0 𝐺2𝑛,1, Γ2𝑛,1 = 0, ∀𝑛 ≠ 2 𝐺32,1 = 0 Γ32,1 = 0 𝐺32,1, Γ32,1 = 0

T 𝐿𝑀1

𝑇
325.23 (12) 142.88 (1) 68.17 (1) 92.94 (1) 97.57 (1) 94.35 (4) 99.11 (1) 100.42 (1) 68.34 (2)

T 𝐿𝑀2

𝑇
424.70 (12) 289.23 (1) 111.15 (1) 140.50 (1) 153.32 (1) 163.81 (4) 307.32 (1) 159.36 (1) 222.24 (2)

Table 3.1: Information criteria for alternative model specifications and results of specification tests. LM tests
for rank deficiency of matrix 𝑺𝑇 and additional diagnostic analysis of the reduced-form model are detailed in
OA E.2, while tests for symmetric loadings of structural shocks and various directions of volatility spillovers
(using LR and LM test statistics) are discussed in Section 2.6.

also incorporated to account for seasonal effects in the conditional mean. Additional

details and visual representations of these variables are provided in OA E.1.

The reduced-form model includes an intercept and 24 lags, chosen based on informa-

tion criteria and the absence of serial correlations in the error terms. As expected, the

data provide strong evidence of conditional heteroskedasticity in the error terms, as

the null hypothesis of homoskedasticity is rejected at any conventional significance

level across both univariate and multivariate ARCH-LM tests on squared residuals

under various specifications. Regarding volatility transmission schemes, I compare

seven alternative GARCH-SVAR specifications, each with different restrictions on

the GARCH parameter matrices 𝐺1 and Γ1. Specifically, I estimate a model with

both 𝐺1 and Γ1 fully unrestricted (SVAR-f), a model with both matrices restricted

to be diagonal (SVAR-d) as in previous studies, two models allowing partial volatil-

ity spillovers but without global identification (SVAR-p-a and SVAR-p-b), and three

globally identified models as defined in (2.15). Additionally, I consider a BEKK(1,1,1)

specification (VAR0-BEKK) to model the conditional covariance of the log-return pro-

cesses directly. The upper panel of Table 3.1 summarizes the information criteria

for these alternative specifications. Models capturing the conditional covariance of

structural shocks show substantial improvements in model fit compared to direct
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agg_dem → fss prec_dem → fss oil_sup → fss

agg_dem → ofuture prec_dem → ofuture oil_sup → ofuture

agg_dem → sp prec_dem → sp oil_sup → sp

agg_dem → ospot prec_dem → ospot oil_sup → ospot
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Panel A: MIRF
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Panel B: CIRF

Figure 3.1: Mean (panel A) and covariance (panel B) impulse response functions to oil price shocks over a
40-day horizon. The MIRF shock dose is set to one standard deviation, while CIRF shocks correspond to the
99%-quantile of each variance innovation’s empirical distribution. Solid lines show the median response, with
dashed and dotted lines indicating 68% and 90% pointwise confidence bands, respectively, based on 1,000
moving-block bootstrap replications.

modeling of the data’s conditional covariance. The information criteria values from

the SVAR approaches are, on average, one-sixth of those for the BEKK model – a

notable finding given that SVAR models include an additional 255 slope parameters

in 𝜶. Among the GARCH-SVAR models, the globally identified models (SVAR-g)

that relax the diagonal restriction provide a better fit to the data. Of these, the

transmission scheme labeled ’SVAR-g-a’ minimizes all considered criteria (AIC, BIC,

and HQ). As a result, I select SVAR-g-a as the benchmark model, with details and

results for alternative specifications available in OA E.9. I further test the identifica-

tion criterion in Lemma 2.2 using the LM tests proposed by Lanne and Saikkonen

(2007) and Lütkepohl and Milunovich (2016) and find strong evidence against the

null hypothesis of any rank deficiency in matrix 𝑺𝑇 .

Panel A in Figure 3.1 displays the MIRFs for model variables, including the future-

spot spreads (fss) computed as the difference in responses between spot and futures

prices, while panel B presents their CIRFs. In Figure 3.2, panel A, shows the historical

decompositions (HDs) of the oil spot price (yellow) and stock price (blue), while panel

B plots each identified daily shock. Furthermore, I study the effect of these shocks
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Cumulative Effect of Oil Supply Shock

Cumulative Effect of Precautionary Demand Shock

Cumulative Effect of Aggregate Demand Shock

1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019 2022 2025

1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019 2022 2025

1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019 2022 2025

−100

0

100

−100

0

100

−100

0

100

 
Panel A: Historical Decomposition of Oil (Yellow) and Stock Prices (Blue)
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Panel B: Structural Shocks (Cumulated)

Figure 3.2: Historical decomposition of oil spot price and stock price (panel A) and cumulative identified oil
price shocks (panel B). Red dashed lines denote major geopolitical events, including the Iraqi invasion of Kuwait
(1990), U.S. and UN interventions in Iraq (1991, 1998), the 9/11 attacks, the 2003 Iraq invasion, sanctions
on Iran (2006, 2022), Russia’s invasion of Ukraine (2022), and Israel’s invasion of Gaza following the Oct. 7
attacks. Green solid lines indicate significant OPEC production adjustments (see OA E.1 for details).

(monthly averages) on lower-frequency variables within a classical set of variables

for global oil market, which includes oil production (OProd), a measure of global

real economic activity (GREA), the real price of oil (ORP), and oil inventory (OInv).

Additionally, I assess effects of these shocks on a selection of U.S. macroeconomic

variables, including output, price and inflation expectations, interest rate and credit

spreads.10 Figure 3.3 presents the MIRFs for these lower-frequency oil market and

macro variables, obtained using local projection (Jorda 2005). Further details on data

sources, transformations, and local projection specifications are provided in OA E.1.

3.2 Transmission of oil price shocks and their volatilities

In an ideal setting, established economic theories would guide the choice of vari-

ance transmission schemes, allowing us to directly attach economic interpretations

10I employ two alternative measures of global real activity: the world industrial production,

as used in Baumeister and Hamilton (2019), and the index constructed by Kilian (2009) based on

dry cargo bulk freight rates. The results, which are largely similar, are presented in Figure 3.3

and Figure XYZ in OA E.8. The set of monthly U.S. macroeconomic variables includes industrial

production (IP), personal consumption expenditures (PCE) inflation, 12-month inflation expectations

from the University of Michigan survey (MICH), the yield on 2-year Treasury securities (GS2), and

the EBP constructed by Gilchrist and Zakrajšek (2012). As alternatives to the EBP, I also consider

additional risk measures, with detailed results provided in Figure 3.4 and Figure XYZ in OA E.8.
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Panel B: Monthly U.S. Macro

Figure 3.3: Monthly mean impulse response functions in a global oil market model (panel A) and a U.S.
macro mode (panel B), shown over 30 months. Solid lines represent median responses, while dashed and dotted
lines indicate 68% and 90% pointwise confidence bands, respectively, based on heteroskedasticity-consistent
standard errors. See OA E.3 for further details.

to the statistically identified shocks. However, since the transmission scheme here

was selected based on likelihood criteria, the shocks, despite being globally identi-

fied, require careful labeling. The empirical results provide clear guidance for this

process: as evident from the MIRFs and CIRFs displayed in Figure 3.1, the three

daily oil price shocks exhibit distinct and well-delineated properties in terms of their

effects on the conditional mean and variance of asset prices. The first shock has the

most pronounced impact on both the conditional mean and variance of stock prices.

This shock is labeled as an aggregate demand shock, reflecting unexpected shifts in

current macroeconomic conditions that drive changes in the demand for the ’flow’

of oil. The second structural shock exerts the largest influence on both the mean and

variance of oil futures prices – its impact on the mean is almost double (tenfold) and

on the variance is nearly fourfold (twelvefold) that of the aggregate demand shock

(or the third shock). This shock is labeled as a precautionary demand shock, encapsu-

lating heightened uncertainties regarding future macroeconomic conditions as well

as anticipated disruptions in oil supply relative to expected demand, independent

of current production levels (see Anzuini et al. 2015 for a similar conceptualization).

The third identified shock, which emerges as the dominant driver of increases in

both the mean and variance of daily oil spot prices – its effects surpassing those

induced by other shocks – is labeled as the oil supply shock, representing unexpected

and sudden disruptions to the current oil production.

24



Notably, the labeling of these shocks closely adheres to conventions established in the

classical literature on low-frequency models. As we carefully examine the MIRFs,

CIRFs, and HDs in this section, and turn to narrative evidence based on real-time

FEVD in the next section to analyze market perceptions of the origins of forecast

uncertainty, the empirical basis for these interpretations becomes even more evi-

dent. The MIRFs of these shocks on low-frequency variables, such as oil production,

economic activity, and credit spreads, exhibit response profiles that align with clas-

sical low-frequency models, while also revealing some notable distinctions. In what

follows, I describe each identified oil price shock’s characteristics and transmission

mechanisms, followed by a discussion of volatility spillovers across these shocks.

Aggregate demand shock A positive aggregate demand shock leads to an increase

in both spot and futures prices for crude oil and has the largest impact on the condi-

tional mean and variance of stock prices, as illustrated in both panels of Figure 3.1.

As shown in Figure 3.2, this shock has been the primary driver of historical stock

price fluctuations while also contributing substantially to variations in oil prices –

consistent with previous findings from low-frequency models (e.g., Kilian and Mur-

phy 2014). Monthly MIRFs reveal that global oil production rises by nearly 1%, with

significance lasting about 15 months, while both world and U.S. industrial produc-

tion show sustained increases. The real price of crude oil and the PCE index respond

significantly, with oil prices peaking at 25% above baseline within three months, and

the PCE index continuing to rise over two years. Contractionary monetary policy

is observed as the 2-year Treasury yield peaks at 75 bps after one year. Financial

conditions significantly improve initially with EBP dropping by 60 bps, which fades

to insignificance after three quarters.

Precautionary demand shock Following a precautionary demand shock, both spot

and futures oil prices rise in close alignment, resembling Gazzani et al. (2024)’s

’forward-looking demand shock’, which reflects how such shocks, embodying

heightened risks of future supply disruptions or increased demand, are typically

priced into both spot and futures price simultaneously. In the low-frequency oil

model shown in panel A of Figure 3.3, this shock initially leads to a modest increase

in oil production and a sharp rise in the real price of oil, which exceeds 40% in the

short run (up to six months), thus lending it characteristics of an oil consumption

shock in the near term. However, in the medium to long term, this shock predicts
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Panel A: Effect of Precautionary Demand on Alternative Risk Measures
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Panel B: Oil Supply Shock before Shale Boom

Figure 3.4: Monthly mean impulse response functions of alternative risk measures in a U.S. macro model,
shown over a 30-month horizon, to the precautionary demand shock (panel A) and oil supply shock using
pre-shale boom data (panel B). See Figure 3.3 and OA E.8 for additional details.

a persistent decline in both oil production and economic activity, accompanied by a

buildup in oil inventory beginning around two years after the shock.

Stock prices drop sharply in response to this shock, as heightened risk aversion

and economic uncertainty prompt investors to shift away from riskier assets, which

presents a notable distinction from results in Gazzani et al. (2024). This effect is

particularly evident in the U.S. macro model, where the precautionary demand

shock uniquely tightens financial conditions measured by the EBP and elevates risk

perceptions across various indicators within a 1-1.5-year horizon (see panel A of

Figure 3.4). Significant increases in risk aversion over similar horizons are observed

in the original GZ credit spread from Gilchrist and Zakrajšek (2012), the global

factor in world risky asset prices from Miranda-Agrippino and Rey (2020) (GRF),

the VIX index, and option-adjusted spreads between high-yield bonds and Treasury

securities (OAS). As investors shift from risky assets to safe havens, as similarly noted

in Anzuini et al. (2015), gold futures increase by approximately 15%, while yields on

2-year and 10-year Treasury notes fall by as much as 1% and 0.5%, respectively, over

a two-year period, possibly signaling an accommodative monetary stance. Elevated

uncertainty also associates with a 3% decline in industrial production at the medium

horizon, likely reflecting pauses in investment and consumption amid economic

concerns (see, e.g., Bloom 2014), while PCE inflation rises (though less than with an

aggregate demand shock) and inflation expectations increase within the first year

before returning to baseline (see Anzuini et al. 2015 for a comparable finding). This

shock, therefore, can create stagflation over the medium term. Figure 3.2 indicates

that the precautionary demand shock has contributed substantially to historical oil
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Figure 3.5: Structural conditional variances for model variables (left column) and their conditional correla-
tions (right column), as implied by the benchmark volatility scheme (SVAR-g-a). Blue dashed lines indicate
unconditional variances and correlations.

price movements but less so to stock market variation. As shown in panel B of the

figure, this shock is closely tied to geopolitical events, as also argued in Anzuini et al.

(2015).11 We will explore these associations further in the next section.

Oil supply shock Following an unexpected disruption in the current oil produc-

tion, spot price rises immediately over 1.5% above baseline. While futures prices

also increase, their adjustment is smaller and delayed. Following a temporary pro-

duction shortfall, stock prices initially decline but quickly recover, rendering the

effect insignificant, similar to findings in Kilian and Park (2009). The world and U.S.

industrial production exhibit a comparable pattern, with an initial decline that fades,

followed by a brief overshoot. Compared to other shocks, the real oil price increase

in the low-frequency model less persistent. Figure 3.2 further reveals that oil supply

shocks minimally contribute to historical oil price movements and have negligible

effects on stock price fluctuations. These results are consistent with previous find-

ings in classic studies on global oil markets using low-frequency models (e.g., Kilian

11As discussed earlier, and similar to interpretations in Gazzani et al. (2024) and Anzuini et al.

(2015), the precautionary demand shock reflects both economic uncertainties and anticipated future

supply disruptions relative to expected oil demand. However, this paper does not take a stance

on whether macroeconomic uncertainty or geopolitical instability in oil-producing regions exerts

a greater influence on oil prices and domestic economic activity. A notable recent contribution is

Kilian et al. (2024), which disentangles level shocks from uncertainty shocks, finding that macroeco-

nomic uncertainty induces recessions, while downside geopolitical risks exert only modest effects on

macroeconomic aggregates.
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and Murphy 2014).

The divergent responses of spot and futures prices create an immediate 1.4% reduc-

tion in the spread. Monthly model results in Figure 3.1 further show that global oil

production sharply drops by 2.5%-3% initially and hardly recovers to baseline over

a 10-month horizon. Facing an unexpected supply shortfall, inventories are drawn

down to meet demand, resulting in persistently low inventory levels. However, this

depletion limits investors’ ability to smooth demand over time, raising the conve-

nience yield and thus the value of holding physical oil over futures contracts, which

contributes to the sharp drop in the spread. Additionally, the muted futures price

response may lead to backwardation, where the convenience yield surpasses carry-

ing costs, reflecting market expectations for a subsequent decline in the spot price –

consistent with monthly oil price responses in panel A of Figure 3.3. This behavior

in spreads aligns with findings in Valenti (2022), who document a significant and

lasting drop in spreads following oil supply disruptions.

Interestingly, the responses of U.S. macroeconomic aggregates to oil supply shocks

are somewhat puzzling. Given oil’s role as a fundamental industrial input and

energy source, a supply-driven price surge would conventionally be expected to

increase production costs, compress profit margins, and introduce inflationary pres-

sures as higher costs pass on to consumers. However, due to advances in shale oil

fracking, which have substantially increased domestic output since 2010, the U.S. has

become the world’s largest oil producer. Thus, certain segments of the economy may

benefit from rising oil prices. To explore this, I re-estimate the model using pre-shale

boom data (1988–2010). The subsample results, shown in panel B of Figure 3.4, align

more closely with conventional expectations: output declines significantly and per-

sistently, while both PCE inflation and inflation expectations rise for approximately

two years, generating stagflationary conditions.

Volatility Spillovers As seen in panel B of Figure 3.1, volatility drivers differ across

markets: uncertainty surrounding the aggregate demand dominates volatility in

equity markets, while oil spot market volatility is primarily driven by oil supply

uncertainty, and futures market volatility is largely influenced by precautionary

demand. Unlike the precautionary demand and oil supply shocks – which lower

the covariance between oil and stock prices due to heightened risk perception and

potential flight-to-safety behaviors – the aggregate demand shock uniquely raises
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Panel C: Daily FEVD of Oil Price (2003)

Aggregate Demand Shock Precautionary Demand Shock Oil Supply Shock

Figure 3.6: Daily FEVD and HD for oil and stock price dynamics during the Gulf War (1990-1991) and
the 2003 Iraq War. Red dashed lines mark key geopolitical developments: in panels A-B, the Iraqi invasion
of Kuwait (Aug. 2, 1990), heightened tensions between Iraq and Israel (Oct. 8), and diplomatic efforts from
France and Saudi Arabia (Oct. 22). The timeline also includes the start and end of Operation Desert Storm,
aerial bombing campaign against Iraq (Jan. 17 - Feb. 28, 1991); in panel C, the start of the 2003 Iraq invasion
(Mar. 20). Black solid lines in panel A-B denote dates of UN economic (Resolutions 661 and 665) and military
(678) sanctions against Iraq. Green solid lines in panel C highlight oil supply-related events, including the
OIC’s announcement of a possible oil embargo in anticipation of military action against Iraq (Feb. 26), OPEC’s
production decisions (maintaining output on Mar. 11 and cutting production by 2 mbpd in an emergency
meeting on April 24), and a reported dramatic drop in Iraqi oil exports by the UNOIP (Mar. 25). For additional
details, see Figure 1.1.

covariance between stock prices and both spot and futures oil prices when its variance

unexpectedly rises. Figure 3.5 illustrates these dynamics over time, showing positive

oil-equity covariance during periods of global economic expansion, such as the early

2000s commodity boom driven by strong global growth and the post-GFC recovery

during the first half of 2010s (see Bernanke 2016 for similar evidence). In contrast,

during periods of heightened geopolitical tension, such as the Gulf War (1990-1991),

oil-equity covariance turns sharply negative.

Comparative analyses (in OA E.4) using the VAR0-BEKK model and a SVAR model

with diagonal GARCH specification (SVAR-d), as adopted in earlier studies, reveal

that these models capture far less of the nuanced second-order dynamics seen here.

This underscores the importance of allowing for volatility spillovers when study-

ing uncertainty transmission across oil and stock markets. As shown in the lower

section of Table 3.1, instantaneous spillovers from unexpected changes in volatility,

particularly from aggregate demand affecting precautionary demand, and from pre-

cautionary demand impacting oil supply, are statistically significant across various

configurations. Notably, the variance of the precautionary demand shock is particu-

larly sensitive to shifts in the other shocks’ volatility, while aggregate demand shock

variance remains unaffected. CIRFs displayed in OA E.5 further demonstrate that

volatility of the aggregate demand shock does not respond to other shocks’ volatility
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at higher horizons, though it indirectly transmits to oil shocks over time, with oil

supply volatility adjusting gradually with considerable lags.12

3.3 Decomposing forecast uncertainty during specific periods

The high-frequency structural model offers a real-time decomposition of market-

perceived uncertainty as it digests information to forecast oil and asset prices. Due

to the heteroskedastic nature of the structural shocks, the composition of forecast un-

certainty is time-varying, often diverging markedly from conventional FEVD results,

which are based on unconditional shock variances. In the following, I examine key

episodes, including the COVID-19 pandemic in early 2020, Russia’s war on Ukraine

in 2022, the Gulf War in the early 1990s, and the 2003 Iraq War – as illustrated in

Figure 1.1 and 3.6, respectively – to demonstrate that the model captures relevant

market information with exceptional granularity.

The Gulf War and the 2003 Iraq War In low-frequency oil models, consensus

generally holds that aggregate demand shocks have a minimal effect on oil price

fluctuations during the Gulf War, while debate persists on whether oil supply or

precautionary demand shocks exert a stronger influence. The daily structural model

may offer a more nuanced perspective. As shown in panel A of Figure 3.6, although

oil supply shocks contribute substantially to oil price movements, precautionary

demand was the primary driver following Iraq’s invasion of Kuwait on Aug. 2, 1990.

This influence accumulates, pushing WTI spot prices up by as much as 40% amid

escalating fears, particularly on Oct. 8, when Saddam Hussein threatened Israel after

Israeli forces firing on Palestinian protesters in Jerusalem, intensifying concerns of

regional conflict (Jacobs 1991). However, the dynamic changed swiftly with the

launch of Operation Desert Storm, a U.S.-led coalition’s aerial bombing campaign

authorized by UN Security Council Resolution 678 on Jan. 17, 1991. The role of

precautionary demand abruptly diminishes, while oil supply shocks become the

predominant force driving oil prices, contributing up to 60% of the increase. This

shift aligns with widespread physical destruction in Kuwaiti oil production facilities

due to fires and spills set by Iraqi forces. Remarkably, the model, using high-

frequency financial data, captures these shifts in the market with high resolution.

12While no volatility spillover from aggregate demand to oil supply is observed on impact, this

does not preclude spillovers at higher horizons. Zero elements in a matrix do not imply zero elements

in its higher powers, as often seen in Granger-causality analysis, where effects can emerge over time.
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For instance, the model detects a sharp drop in precautionary demand’s contribution

on Oct. 22, when diplomatic overtures from Saudi Arabia hinted at a potential Iraqi

withdrawal. The one-day-ahead FEVD in panel B offers a parallel perspective,

revealing that oil supply uncertainty was already perceived by the market as a

primary driver of forecast uncertainty as early as August 1990. Notably, just days

after Iraq’s invasion of Kuwait, the passing of UN Security Council Resolution 661,

imposing economic sanctions on Iraq, elevated the oil supply shock’s contribution

to the one-day-ahead FEV of oil spot prices to 91%, nearly 2.5 times its unconditional

level of 37%.

A similar dynamic is observed during the 2003 U.S.-led invasion of Iraq. Almost

a month leading up to the invasion, on Feb. 26, leaders of the Organisation of the

Islamic Conference (OIC) suggested a potential oil embargo to dissuade the U.S. from

military action, immediately raising market participants’ perception of oil supply risk

as the leading source of forecast uncertainty. A further surge occurred five days into

the war, when the UN reported a 75% drop in Iraqi oil exports compared to the

previous week. This unexpectedly severe supply disruption heightened oil supply’s

contribution to forecast uncertainty to approximately 91%, which sustained elevated

levels above 70% for the following week.

Covid-19 pandemic and Russian invasion of Ukraine The oil market has experi-

enced extreme turbulence in early 2020 with the onset of the COVID-19 pandemic.

While traditional FEVD estimates based on unconditional shock variances suggest

that aggregate demand shocks account for roughly 12% of the one-day-ahead FEV

of WTI spot prices, this dynamic shifted significantly as the pandemic evolved. On

February 25, when the CDC issued its first public warning of a COVID-19 outbreak

and as major U.S. cities reported their ’patient zero’ cases, the contribution of ag-

gregate demand shocks to forecast variance surged temporarily to approximately

44%, as illustrated in panel A of Figure 1.1. Another peak occurred on March 17

and 18, coinciding with Treasury Secretary Mnuchin’s warning that unemployment

could reach 20% without substantial federal action and the Senate’s approval of an

emergency relief aid package. From late March onward, however, as Saudi Arabia

increased oil production amidst a price war with Russia, oil supply shocks emerged

as the primary driver of forecast uncertainty. On April 2, following pressure from

President Trump on Saudi Crown Prince Mohammed bin Salman to initiate produc-
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tion cuts, WTI prices jumped 24.7% in anticipation of a supply reduction, with oil

supply uncertainty accounting for nearly 90.6% of the forecast variance of WTI spot

prices. After OPEC and Russia formalized a historic agreement to cut production by

nearly 10 mbpd on April 9, with the cuts taking effect on May 1, oil supply shocks

remained the dominant source of forecast uncertainty until mid-May.

In contrast, oil supply shocks played a limited role in driving forecast uncertainty

for oil prices during the Russian invasion of Ukraine, with few exceptions. For

instance, as illustrated in panels E of Figure 1.1, the forecast uncertainty for oil prices

contributed by oil supply spiked on March 8, when the U.S. Senate introduced

legislation to ban Russian oil imports. Notably, on dates when FOMC announced

interest rate hikes, aggregate demand uncertainty increased its share of forecast

variance for oil prices, accounting for about one-third of the one-day-ahead forecast

variance of WTI prices – nearly three times its unconditional FEVD contribution.

Panel F further shows that uncertainty regarding current economic conditions con-

sistently drove forecast uncertainty for equity markets. However, on Mar. 11 when

President Biden signed an executive order enforcing the ban, the precautionary de-

mand shocks accounted for 40.1% of the forecast variance in stock prices, over six

times their typical contribution. Similarly, on July 5, when oil prices dropped by

about 9%, marking the steepest daily decline since March, concerns intensified over

potential demand reductions as news emerged of Covid-19 mass testing and lock-

downs in China. This led to fears of a deepening recession, tripling the precautionary

demand shock’s share of forecast variance from 7% to 22%.

4 Conclusion

This paper develops a high-frequency SVAR framework to identify oil price shocks

and analyze the transmission of their uncertainties. Using daily data on oil spot and

futures prices alongside stock indices, the model identifies three structural shocks

and demonstrates how each shock influences asset prices and volatilities, as well

as how they propagate through U.S. financial and macroeconomic systems. Lever-

aging the stylized characteristics of high-frequency financial data, such as volatility

clustering, effectively captured by a GARCH model, the approach achieves global

identification of these shocks while allowing for volatility spillovers across them.

For estimation, the paper introduces a QML estimator shown to be consistent and
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asymptotically normal under mild conditions. In simulation studies, this estima-

tor, together with LM and LR-type specification tests, exhibits robust finite-sample

properties. Empirical findings suggest that aggregate demand uncertainty domi-

nates volatility in equity markets, while oil supply and precautionary demand un-

certainty primarily drive the volatility in oil spot and futures markets, respectively.

Precautionary demand shocks, reflecting heightened economic uncertainty and risk

aversion, sharply increase both spot and futures prices and cause notable declines in

stock prices as investors pivot away from risk assets. Conversely, an unexpected oil

supply disruption triggers a strong and immediate rise in spot prices, with a more

muted response in futures prices, producing a marked reduction in the futures-spot

spread. The real-time forecast error variance decomposition further captures evolv-

ing market perceptions of uncertainty, showing that oil supply uncertainty was the

primary driver of oil price forecast uncertainty between late March and early May

2020, while contributing minimally during the 2022 Russian invasion of Ukraine.

This framework opens avenues for future research into the economic foundations

of volatility transmission schemes across distinct shocks, which may offer new per-

spectives on structural identification and guide multivariate volatility modelling.
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A Proofs of theorems

Proof of Theorem 2.4: At ℎ = 1, E[𝜎𝑡+1 |F𝑡−1, 𝜂𝑡 = 𝜂
∗] −E[𝜎𝑡+1 |F𝑡−1] = 𝐺1Σ𝑡 [(𝜂∗ ⊙ 𝜂∗) −

1𝑁 ], while for ℎ > 1, E[𝜂𝑡+ℎ ⊙ 𝜂+ℎ |F𝑡−1, 𝜂𝑡 = 𝜂
∗] = E[𝜂𝑡+ℎ ⊙ 𝜂+ℎ |F𝑡−1] = 1𝑁 and thus

E[𝜎𝑡+ℎ |F𝑡−1, 𝜂𝑡 = 𝜂
∗] − E[𝜎𝑡+ℎ |F𝑡−1] = (𝐺1 + Γ1)ℎ−1(E[𝜎𝑡+1 |F𝑡−1, 𝜂𝑡 = 𝜂

∗] − E[𝜎𝑡+1 |F𝑡−1])

= (𝐺1 + Γ1)ℎ−1𝐺1Σ𝑡 [(𝜂∗ ⊙ 𝜂∗) − 1𝑁 ] .

Hence, V𝜉

𝑡+ℎ (𝜂
∗ |F𝑡−1) =

(
(𝐺1 + Γ1)ℎ−1𝐺1Σ𝑡 [(𝜂∗ ⊙ 𝜂∗) − 1𝑁 ]1′𝑁

)
⊙ 𝐼𝑁 . To show (2.9), note

that 𝜉𝑡 |F𝑡−1, 𝜂𝑡 = 𝜂
∗ = Σ

1/2
𝑡 𝜂∗ a.s., while E[𝜉𝑡𝜉′𝑡 |F𝑡−1] = Σ𝑡 , thus

V𝑦

𝑡+ℎ (𝜂
∗ |F𝑡−1) =

ℎ∑︁
𝑖=0

Θ𝑖 (Cov[𝜉𝑡+ℎ−𝑖 |F𝑡−1, 𝜂𝑡 = 𝜂
∗] − Cov[𝜉𝑡+ℎ−𝑖 |F𝑡−1])Θ′

𝑖 =

ℎ−1∑︁
𝑖=0

Θ𝑖V𝜉

𝑡+ℎ−𝑖 (𝜂
∗ |F𝑡−1)Θ′

𝑖 .□

Proof of Theorem 2.5: First, note that the ℎ-step forecast error variance can be written

as E[𝑢𝑡,ℎ𝑢′𝑡,ℎ |F𝑡] =
∑ℎ−1

𝑖=0

∑𝑁
𝑗=1
E[𝜎𝑗 ,𝑡+ℎ−𝑖 |F𝑡]Θ𝑖𝑒 𝑗𝑒′𝑗Θ′

𝑖
. Since the Sequence {𝜂𝑡} is iid s.t.

E[(𝜂𝑡+ℎ−1 ⊙ 𝜂𝑡+ℎ−1) |F𝑡] = 1𝑁 , we have for ℎ ≥ 2,

E[𝜎𝑡+ℎ |F𝑡] = 𝛾0 + 𝐺1E[Σ𝑡+ℎ−1 |F𝑡]E[(𝜂𝑡+ℎ−1 ⊙ 𝜂𝑡+ℎ−1) |F𝑡] + Γ1E[Σ𝑡+ℎ−1 |F𝑡]1𝑁
= 𝛾0 + (𝐺1 + Γ1)E[𝜎𝑡+ℎ−1 |F𝑡] .

Recursive substitutions lead to

E[𝜎𝑡+ℎ |F𝑡] =
(
𝐼𝑁 + (𝐺1 + Γ1) + (𝐺1 + Γ1)2 + . . . (𝐺1 + Γ1)ℎ−2

)
𝛾0 + (𝐺1 + Γ1)ℎ−1𝜎𝑡+1

=

(
𝐼𝑁 − (𝐺1 + Γ1)ℎ−1

)
(𝐼𝑁 − (𝐺1 + Γ1))−1 𝛾0 + (𝐺1 + Γ1)ℎ−1𝜎𝑡+1

= (𝐼𝑁 − (𝐺1 + Γ1))−1 𝛾0 + (𝐺1 + Γ1)ℎ−1

[
𝜎𝑡+1 − (𝐼𝑁 − (𝐺1 + Γ1))−1 𝛾0

]
,

where the 𝑁×𝑁 matrix inverse (𝐼𝑁 − (𝐺1 + Γ1))−1

is well-defined since 𝜌(𝐺1+Γ1) < 1.

Note that the second term is a positive coefficient times the difference between
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the conditional and unconditional variances (𝐼𝑁 − (𝐺1 + Γ1))−1 𝛾0 = E[𝜎2

𝑡 ] = 1𝑁 .

Another way to see this is by plugging in the parameter restrictions imposed 𝛾0 =

(𝐼𝑁 − (𝐺1 + Γ1))1𝑁 , and hence E[𝜎𝑡+ℎ |F𝑡] = 1𝑁 + (𝐺1 + Γ1)ℎ−1 [𝜎𝑡+1 − 1𝑁 ] , for all ℎ ≥ 1,

which completes the proof. □

Proof of Lemma 2.2: First, given the conditional second-order moment of the

reduced-form model residual

E[𝑢𝑡𝑢′𝑡 |F𝑡−1] = 𝐵E[𝜉𝑡𝜉′𝑡 |F𝑡−1]𝐵′ = 𝐵Σ𝑡𝐵′,

both the structural impact multiplier 𝐵 and the variances of the structural shocks

Σ𝑡 are identified up to an orthogonal transformation. Let 𝐵∗ = 𝐵𝑄′
, Σ∗

𝑡 = 𝑄Σ𝑡𝑄
′

with 𝑄 ∈ O(𝑁), then (𝐵∗, Σ∗
𝑡 ) and (𝐵, Σ𝑡) are observationally equivalent, i.e.,

𝐵∗Σ∗
𝑡 𝐵

∗′ = 𝐵𝑄′𝑄Σ𝑡𝑄′𝑄𝐵′ = 𝐵Σ𝑡𝐵
′. The associated vector of non-structural orthog-

onalized shocks is given by 𝜉∗𝑡 = 𝐵
∗−1

𝑡 with conditional covariance matrix given by

Σ∗
𝑡 = 𝑄Σ𝑡𝑄

′ =



∑𝑁
𝑘=1

𝜎2

𝑘𝑡
𝑞1𝑘𝑞1𝑘

∑𝑁
𝑘=1

𝜎2

𝑘𝑡
𝑞1𝑘𝑞2𝑘 . . .

∑𝑁
𝑘=1

𝜎2

𝑘𝑡
𝑞1𝑘𝑞𝑁𝑘∑𝑁

𝑘=1
𝜎2

𝑘𝑡
𝑞2𝑘𝑞1𝑘

∑𝑁
𝑘=1

𝜎2

𝑘𝑡
𝑞2𝑘𝑞2𝑘 . . .

∑𝑁
𝑘=1

𝜎2

𝑘𝑡
𝑞2𝑘𝑞𝑁𝑘

...
...

. . .
...∑𝑁

𝑘=1
𝜎2

𝑘𝑡
𝑞𝑁𝑘𝑞1𝑘

∑𝑁
𝑘=1

𝜎2

𝑘𝑡
𝑞𝑁𝑘𝑞2𝑘 . . .

∑𝑁
𝑘=1

𝜎2

𝑘𝑡
𝑞𝑁𝑘𝑞𝑁𝑘


.

Since structural shocks in 𝜉∗𝑡 are uncorrelated, Σ∗
𝑡 must be a diagonal matrix and thus∑𝑁

𝑘=1
𝜎2

𝑘𝑡
𝑞𝑖𝑘𝑞 𝑗 𝑘 = 0 for all 𝑖 ≠ 𝑗 for all 𝑡. This condition can be expressed as

𝜎2

11
𝜎2

21
. . . 𝜎2

𝑁1

𝜎2

12
𝜎2

22
. . . 𝜎2

𝑁2

...
...

. . .
...

𝜎2

1𝑇
𝜎2

2𝑇
. . . 𝜎2

𝑁𝑇

︸                        ︷︷                        ︸
𝑺𝑇


𝑞𝑖1𝑞 𝑗1

𝑞𝑖2𝑞 𝑗2

. . .

𝑞𝑖𝑁𝑞 𝑗𝑁


= 0, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑁}, 𝑖 ≠ 𝑗 .

Since rank 𝑺𝑇 = 𝑁 , the only solution to the system above is 𝑞𝑖𝑘𝑞 𝑗 𝑘 = 0 for all 𝑖 ≠ 𝑗

and all 𝑘 = 1, . . . , 𝑁 . However, since 𝑄 ∈ O(𝑁), ∑𝑁
𝑗=1
𝑞2

𝑗 𝑘
= 1 for all 𝑘 , each column

in𝑄 can not have two (or more) non-zero elements and the only non-zero element is

either +1 or −1. Consequently, 𝑄 must take the form 𝑄 = PD, 𝐵 is identified up to

column permutations and sign flips and the structural shocks in 𝜉𝑡 are identified up

to a reordering. The GARCH model (2.6) can be uniquely and compactly written as

𝜎𝑡 = 𝛾0 +
𝑞∑︁
𝑖=1

𝐺𝑖 (𝜉𝑡−𝑖 ⊙ 𝜉𝑡−𝑖) +
𝑝∑︁
𝑖=1

Γ𝑖𝜎𝑡−𝑖 .
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As the variances do not exhibit equivalent representations, the conditional variance

vector of the permuted shocks 𝜉∗𝑡 = P′𝜉𝑡 , reads as

𝜎∗
𝑡 = P′𝜎𝑡 = P′𝛾0 +

𝑞∑︁
𝑖=1

P′𝐺𝑖PP′(𝜉𝑡−𝑖 ⊙ 𝜉𝑡−𝑖) +
𝑝∑︁
𝑖=1

P′Γ𝑖PP′𝜎𝑡−𝑖

= 𝛾∗
0
+

𝑞∑︁
𝑖=1

(P′𝐺𝑖P)(P′𝜉𝑡−𝑖 ⊙ P′𝜉𝑡−𝑖) +
𝑝∑︁
𝑖=1

(P′Γ𝑖P)𝜎∗
𝑡−𝑖

= 𝛾∗
0
+

𝑞∑︁
𝑖=1

𝐺∗
𝑖 (𝜉∗𝑡−𝑖 ⊙ 𝜉∗𝑡−𝑖) +

𝑝∑︁
𝑖=1

Γ∗
𝑖 𝜎

∗
𝑡−𝑖,

with 𝐺∗
𝑖
= P′𝐺𝑖P and Γ∗

𝑖
= P′Γ𝑖P. This completes the proof. □

Proof of Theorem 2.6: For the consistency of standard estimators of VAR reduced-

form parameters (𝜶̂′
𝑇 , 𝝎̂

′
𝑇 )′

𝑝
−→ (𝜶′

0
,𝝎′

0
)′, since {𝑢𝑡} is a MDS and the process is sta-

tionary and ergodic, as we show next, by Lemma 3.1 of Lütkepohl (2005) there exists

non-singular matrix 𝑀𝑍 ∈ R𝑁𝑃×𝑁𝑃 s.t., 𝑍𝑍′/𝑇 = 𝑀𝑍 +𝑜𝑝 (1) and𝑇−1/2 ∑𝑇
𝑡=1

vec

(
𝑢𝑡𝑍

′
𝑡−1

)
is uniformly tight. By a continuous mapping Theorem, we have 𝜀𝑡 := 𝜀𝑡 (𝜗̂𝑟,𝑇 )

𝑝
−→ 𝜀𝑡

with 𝜀𝑡 = 𝜀𝑡 (𝜗𝑟,0). The conditional variances can be embedded in a stochastic recur-

rent equation (see, e.g., Straumann and Mikosch 2006):

𝜎𝑡 = 𝛾0 +
[
((𝜂𝑡 ⊙ 𝜂𝑡)′ ⊗ 𝐺1(𝜙)) Δ′

𝜎 + Γ1(𝜙)
]
𝜎𝑡−1 = 𝛾0 + 𝚪𝑡−1𝜎𝑡−1.

It is well-known in the literature on stochastic dynamic systems that the process has a

non-anticipative strictly stationary solution if the associated top Lyapunov exponent

is strictly negative (Bougerol and Picard 1992):

𝜸 = inf

{
E

[
1

ℎ + 1

log ∥𝚪0𝚪−1 . . . 𝚪−ℎ∥
]
, ℎ ∈ N

}
< 0.

Since 𝜸 ≤ E[log ∥𝚪𝑡 ∥] with equality in case 𝑁 = 1, Assumption (A3) implies that

the top Lyapunov exponent is strictly negative on parameter space 𝛷. Thus, {𝜎𝑡}
is geometric ergodic and has a non-anticipative strictly stationary solution, which

extends to the sequence {𝑢𝑡} by Proposition 1 of Meitz and Saikkonen (2008). The

stationarity of the sequence {𝑦𝑡} follows from Assumption (A3).

Let Σ̃𝑡 (𝜙) be the conditional variance process where the initial values are drawn

from the stationary distribution. Let 𝑙𝑡 and L̃𝑇 be defined analogously. Denote

𝜉𝑡 (𝜚, 𝜗𝑟) = 𝑄(𝜚)′𝜀𝑡 (𝜗𝑟) and 𝜉𝑡 (𝜚) = 𝑄(𝜚)′𝜀𝑡 (𝜗𝑟,0), L̃𝑇 (𝜗𝑠) = L̃𝑇 (𝜗𝑠 |𝜗𝑟,0) and L𝑇 (𝜗𝑠) =
L𝑇 (𝜗𝑠 |𝜗𝑟,0). We next show that any fixed initialization of the conditional variances
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is asymptotically irrelevant. By a triangle inequality,

sup

𝜗𝑠∈𝛩𝑠

|L̃𝑇 (𝜗𝑠) − L𝑇 (𝜗𝑠) | ≤
1

𝑇

𝑇∑︁
𝑡=1

sup

𝜗𝑠∈𝛩𝑠

���𝜉𝑡 (𝜚)′ (Σ−1

𝑡 (𝜙) − Σ̃−1

𝑡 (𝜙)
)
𝜉𝑡 (𝜚)

���︸                                                      ︷︷                                                      ︸
Δ̃
(𝐼 )
L𝑇

+ 1

𝑇

𝑇∑︁
𝑡=1

max

{
sup

𝜙∈Φ
log

���Σ𝑡 (𝜙)Σ̃−1

𝑡 (𝜙)
��� , sup

𝜙∈Φ
log

���Σ̃𝑡 (𝜙)Σ−1

𝑡 (𝜙)
���}︸                                                                             ︷︷                                                                             ︸

Δ̃
(𝐼 𝐼 )
L𝑇

For the first part, note that

Δ̃
(𝐼)
L𝑇

=
1

𝑇

𝑇∑︁
𝑡=1

sup

𝜗𝑠∈𝛩𝑠

���tr (
Σ̃−1

𝑡 (𝜙)
(
Σ𝑡 (𝜙) − Σ̃𝑡 (𝜙)

)
Σ−1

𝑡 (𝜙)𝜉𝑡 (𝜚)𝜉𝑡 (𝜚)′
)���

≤ 1

𝑇

𝑇∑︁
𝑡=1

𝑁 sup

𝜗𝑠∈𝛩𝑠

∥Σ−1

𝑡 (𝜙)∥∥Σ𝑡 (𝜙) − Σ̃𝑡 (𝜙)∥∥Σ̃−1

𝑡 (𝜙)∥∥𝜉𝑡 (𝜚)𝜉𝑡 (𝜚)′∥

≤ 𝑇−1𝑁𝑀𝜎𝑀𝜎̃𝑀𝜎′

𝑇∑︁
𝑡=1

𝜓𝑡𝜎∥𝜉𝑡 (𝜚)𝜉𝑡 (𝜚)′∥,

where the first inequality holds since for any 𝐴 ∈ R𝑚×𝑛, 𝐵 ∈ R𝑛×𝑚, |tr (𝐴𝐵) | ≤
(𝑚𝑛)1/2∥𝐴∥∥𝐵∥ due to Cauchy-Schwarz inequality, and the last inequality follows

from Lemma A.1 with 𝜓𝜎 ∈ [0, 1). Moreover, since ∥𝑄(𝜚)∥ = 1 for all 𝜚 ∈ R, for some

0 < 𝑠 < 1, E∥𝜉𝑡 ∥2𝑠 ≤ E∥𝜂𝑡 ∥2𝑠 < ∞, thus,

E

����� 𝑇∑︁
𝑡=1

𝜓𝑡𝜎∥𝜉𝑡 (𝜚)𝜉𝑡 (𝜚)′∥
�����𝑠 ≤ 𝑇∑︁

𝑡=1

𝜓𝑠𝑡𝜎 ∥𝑄(𝜚)∥E∥𝜉𝑡𝜉′𝑡 ∥𝑠∥𝑄(𝜚)∥ ≤
𝑇∑︁
𝑡=1

𝜓𝑠𝑡𝜎E∥𝜉𝑡 ∥2𝑠 < ∞,

by Assumption (A2) and Lemma A.1.Thus, Δ̃
(𝐼)
L𝑇

= 𝑂 (𝑇−1). For the second part, since

|𝐴| ≤ ∥𝐴∥𝑁 for 𝐴 ∈ 𝑅𝑁×𝑁 and by Minkowski inequality and Lemma A.1,

1

𝑇

𝑇∑︁
𝑡=1

sup

𝜙∈Φ
log

���Σ𝑡 (𝜙)Σ̃−1

𝑡 (𝜙)
��� = 1

𝑇

𝑇∑︁
𝑡=1

sup

𝜙∈Φ
log

���𝐼𝑁 + (Σ𝑡 (𝜙) − Σ̃𝑡 (𝜙))Σ̃−1

𝑡 (𝜙)
���

≤ 1

𝑇

𝑇∑︁
𝑡=1

sup

𝜙∈Φ
𝑁 log

(
∥𝐼𝑁 ∥ + ∥Σ𝑡 (𝜙) − Σ̃𝑡 (𝜙)∥∥Σ̃−1

𝑡 (𝜙)∥
)

≤ 1

𝑇

𝑇∑︁
𝑡=1

sup

𝜙∈Φ
𝑁 ∥Σ𝑡 (𝜙) − Σ̃𝑡 (𝜙)∥∥Σ̃−1

𝑡 (𝜙)∥

≤ 𝑇−1𝑁𝑀𝜎′𝑀𝜎̃

𝑇∑︁
𝑡=1

𝜓𝑡𝜎
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and similarly,
1

𝑇

∑𝑇
𝑡=1

sup𝜙∈Φ log

��Σ̃𝑡 (𝜙)Σ−1

𝑡 (𝜙)
�� ≤ 𝑇−1𝑁𝑀𝜎′𝑀𝜎

∑𝑇
𝑡=1
𝜓𝑡𝜎, thus,

Δ̃
(𝐼 𝐼)
L𝑇

≤ 𝑇−1𝑁𝑀𝜎′ max{𝑀𝜎, 𝑀𝜎̃}
𝑇∑︁
𝑡=1

𝜓𝑡𝜎 → 0, as 𝑇 → ∞.

Furthermore,

sup

𝜗𝑠∈𝛩𝑠

|L𝑇 (𝜗𝑠 |𝜗̂𝑟,𝑇 ) − L𝑇 (𝜗𝑠) | =
1

𝑇

𝑇∑︁
𝑡=1

sup

𝜗𝑠∈𝛩𝑠

|tr
(
𝑄(𝜚)Σ−1

𝑡 (𝜙)𝑄(𝜚)′(𝜀𝑡𝜀′𝑡 − 𝜀𝑡𝜀′𝑡)
)
| ≤ 𝑁𝑀𝜎̃

𝑇

𝑇∑︁
𝑡=1

(𝜀𝑡𝜀′𝑡 − 𝜀𝑡𝜀′𝑡).

Therefore, we have uniform convergence of the log-likelihood by a triangle in-

equality sup𝜗𝑠∈𝛩𝑠
|L𝑇 (𝜗𝑠 |𝜗̂𝑟,𝑇 ) − L̃𝑇 (𝜗𝑠) | → 0, a.s. Finally, since both 𝑙𝑡 (𝜗𝑠 |𝜗̂𝑟,𝑇 ) and

𝑙𝑡 (𝜗𝑠) are continuous and thus measurable functions of an ergodic strictly station-

ary sequence, they are also ergodic strictly stationary. Applying a uniform ergodic

theorem entails that sup𝜗𝑠∈𝛩𝑠
|L𝑇 (𝜗𝑠 |𝜗̂𝑟,𝑇 ) − E[−𝑙𝑡 (𝜗𝑠)] | = 0, a.s., as 𝑇 → ∞. By

Lemma A.2, the population objective function E[𝑙𝑡 (𝜗𝑠)] has a clear and unique min-

imizer at the true value 𝜗𝑠,0. This proves the consistency of the QML estimator

𝜗̂𝑠,𝑇 = argmax𝜗𝑠∈𝛩𝑠
L𝑇 (𝜗𝑠 |𝜗̂𝑟,𝑇 ). □

Proof of Theorem 2.7: Conditional on the reduced-form parameters and initial

values generated from the stationary distribution, the corresponding (negative) score

is given by ∇𝜗𝑠 𝑙𝑡 (𝜗𝑠) :=
𝜕𝑙𝑡 (𝜗𝑠 |𝜗𝑟 ,0)

𝜕𝜗𝑠
= (∇𝜚𝑙𝑡 (𝜗𝑠)′,∇𝜙𝑙𝑡 (𝜗𝑠)′)′. For 𝑖 = 1, . . . , 𝑑𝜚,

∇𝜚𝑖 𝑙𝑡 (𝜗𝑠) = 2𝜉𝑡 (𝜚)′Σ̃−1

𝑡 (𝜙) 𝜕𝜉𝑡 (𝜚)
𝜕𝜚𝑖

= 2𝜀′𝑡𝑄(𝜚)Σ̃−1

𝑡 (𝜙) (𝜀′𝑡 ⊗ 𝐼𝑁 )𝐾𝑁𝑁vec (∇𝑖𝑄(𝜚)) ,

where ∇𝑖𝑄(𝜚) =
𝜕𝑄(𝜚)
𝜕𝜚𝑖

is the 𝑁 × 𝑁 matrix of partial derivatives and 𝐾𝑁𝑁 is the

commutation matrix. Moreover, for 𝑖 = 1, . . . , 𝑑𝜙,

∇𝜙𝑖 𝑙𝑡 (𝜗𝑠) =
𝜕 log |Σ𝑡 (𝜙) |

𝜕𝜙𝑖
+ 𝜕

𝜕𝜙𝑖
𝜉𝑡 (𝜚)′Σ̃−1

𝑡 (𝜙)𝜉𝑡 (𝜚)

= tr

(
Σ̃−1

𝑡 (𝜙) 𝜕Σ̃𝑡 (𝜙)
𝜕𝜙𝑖

− Σ̃−1

𝑡 (𝜙)𝜉𝑡 (𝜚)𝜉𝑡 (𝜚)′Σ̃−1

𝑡 (𝜙) 𝜕Σ̃𝑡 (𝜙)
𝜕𝜙𝑖

)
.

Without loss of generality, suppose 𝑄(𝜚0) = 𝐼𝑁 , then 𝜀𝑡 = 𝑄(𝜚0)𝜉𝑡 = 𝜉𝑡 . Evaluating at

the 𝜗𝑠,0 and using the elementary relation vec (𝐴)′ vec (𝐵) = tr (𝐴′𝐵), the scores are

∇𝜚𝑖 𝑙𝑡 (𝜗𝑠,0) = 2((𝜉′𝑡 ⊗ 𝐼𝑁 )Σ̃−1

𝑡 𝜉𝑡)′𝐾𝑁𝑁vec (∇𝑖𝑄) = 2tr

(
𝜉𝑡𝜉

′
𝑡 Σ̃

−1

𝑡 ∇𝑖𝑄′
)
,

where the parameter dependence at the true value is suppressed, and

∇𝜙𝑖 𝑙𝑡 (𝜗𝑠,0) = tr

(
Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

− Σ̃−1

𝑡 Σ̃
1/2
𝑡 𝜂𝑡𝜂

′
𝑡 Σ̃

1/2′
𝑡 Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

)
42



= tr

(
(𝐼𝑁 − 𝜂𝑡𝜂′𝑡)Σ̃

−1/2
𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

Σ̃
−1/2′
𝑡 (𝜙0)

)
= vec

(
𝐼𝑁 − 𝜂𝑡𝜂′𝑡

)′ (Σ̃−1/2
𝑡 ⊗ Σ̃

−1/2
𝑡 )Δ+

𝜎

𝜕𝜎𝑡 (𝜙0)
𝜕𝜙𝑖

.

Let I =

[
𝐼𝜚𝜚 I𝜚𝜙
I′
𝜚𝜙

I𝜙𝜙

]
with I𝜚𝜚 = E[∇𝜚𝑙𝑡 (𝜗𝑠,0)∇𝜚𝑙𝑡 (𝜗𝑠,0)′], I𝜚𝜙 = E[∇𝜚𝑙𝑡 (𝜗𝑠,0)∇𝜙𝑙𝑡 (𝜗𝑠,0)′],

and I𝜙𝜙 = E[∇𝜙𝑙𝑡 (𝜗𝑠,0)∇𝜙𝑙𝑡 (𝜗𝑠,0)′]. We next show that the covariance matrix I is

well-defined. First, note that

E
��∇𝜚𝑖 𝑙𝑡 (𝜗𝑠,0)∇𝜚 𝑗

𝑙𝑡 (𝜗𝑠,0)
�� ≤ 4𝑁E

[
∥𝜉𝑡𝜉′𝑡 Σ̃−1

𝑡 ∥2∥∇𝑖𝑄∥∥∇ 𝑗𝑄∥
]
= 4𝑁E




Σ̃−1/2
𝑡 𝜂𝑡𝜂

′
𝑡 Σ̃

−1/2
𝑡




2

< ∞,

since by Assumption (A5), E∥𝜂𝑡 ∥4 = E
[
tr

(
𝜉′𝑡 Σ̃

−1

𝑡 𝜉𝑡
)
2

]
≤ 𝑁2𝑀2

𝜎̃
E∥𝜉𝑡 ∥4 < ∞, where 𝑀2

𝜎̃

is defined analogously as in Lemma A.1 and 𝑀2

𝜎̃
< ∞ due to the compactness of the

parameter space. Since E∥𝜂𝑡 ∥4 < ∞, E
[
vec

(
𝐼𝑁 − 𝜂𝑡𝜂′𝑡

)
vec

(
𝐼𝑁 − 𝜂𝑡𝜂′𝑡

)′]
is finite. By

Lemma A.3, E

[
sup𝜙∈B(𝜙0,𝛿)




Σ̃−1/2
𝑡 (𝜙) 𝜕Σ̃𝑡 (𝜙)

𝜕𝜙𝑖
Σ̃
−1/2′
𝑡 (𝜙)




2𝑠
]
< ∞ for some 𝑠 > 1,

E





(Σ̃−1/2
𝑡 (𝜙0) ⊗ Σ̃

−1/2
𝑡 (𝜙0))Δ+

𝜎

𝜕𝜎𝑡 (𝜙0)
𝜕𝜙𝑖





2

< ∞,

and thus E
��∇𝜙𝑖 𝑙𝑡 (𝜗𝑠,0)∇𝜙 𝑗

𝑙𝑡 (𝜗𝑠,0)
�� < ∞. Furthermore,

E
��∇𝜚𝑖 𝑙𝑡 (𝜗𝑠,0)∇𝜙 𝑗

𝑙𝑡 (𝜗𝑠,0)
�� ≤ 2𝑁E[∥𝜉𝑡𝜉′𝑡 Σ̃−1

𝑡 ∥∥𝐼𝑁 − 𝜉𝑡𝜉𝑡 Σ̃−1

𝑡 ∥∥∇𝑖𝑄∥∥𝜕Σ̃𝑡 (𝜙0)/𝜕𝜙𝑖Σ̃−1

𝑡 ∥] < ∞,

by Lemma A.1 and Lemma A.3. Notably, E
[
∇𝜗𝑠 𝑙𝑡 (𝜗𝑠,0) |F𝑡−1

]
= 0 and thus,{

∇𝜗𝑠 𝑙𝑡 (𝜗𝑠,0)
}

is a square-integrable stationary ergodic martingale difference sequence.

By a corresponding CLT and Cramér-Wold device, as 𝑇 → ∞,

√
𝑇∇𝜗𝑠 L̃𝑇 (𝜗𝑠,0) =

1

√
𝑇

𝑇∑︁
𝑡=1

∇𝜗𝑠 𝑙𝑡 (𝜗𝑠,0)
𝑑−→ N (0,I).

By Lemma 4(i) in Hafner and Preminger (2009a) and Lemma A.3,

by a similar argument in the proof of Theorem 2.6 we have

sup𝜙∈𝐵(𝜙0,𝛿)
√
𝑇



∇𝜗𝑠 L̃𝑇 (𝜗𝑠,0) − ∇𝜗𝑠L𝑇 (𝜗𝑠,0)


 → 0, a.s. as 𝑇 → ∞. For the Hessian

matrix, denote ∇𝜗𝑠,𝑖𝜗𝑠, 𝑗 𝑙𝑡 (𝜗𝑠) :=
𝜕2𝑙𝑡 (𝜗𝑠 |𝜗𝑟 ,0)
𝜕𝜗𝑠,𝑖𝜕𝜗𝑠, 𝑗

, J𝜚𝜚 = E[∇𝜚𝜚𝑙𝑡 (𝜗𝑠,0)], J𝜚𝜙 = E[∇𝜚𝜙𝑙𝑡 (𝜗𝑠,0)],

J𝜙𝜙 = E[∇𝜙𝜙𝑙𝑡 (𝜗𝑠,0)] and J =

[
J𝜚𝜚 J𝜚𝜙
J ′
𝜚𝜙

J𝜙𝜙

]
, with typical elements given by

∇𝜚𝑖 𝜚 𝑗
𝑙𝑡 (𝜗𝑠,0) = tr

(
Σ̃−1

𝑡 (𝜉′𝑡 ⊗ 𝐼𝑁 )𝐾𝑁𝑁vec (∇𝑖𝑄) vec

(
∇ 𝑗𝑄

)′
𝐾′
𝑁𝑁 (𝜉𝑡 ⊗ 𝐼𝑁 )

)
= vec

(
∇ 𝑗𝑄

′)′ (𝜉𝑡𝜉′𝑡 ⊗ Σ̃−1

𝑡 )vec (∇𝑖𝑄′)
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= tr

(
∇ 𝑗𝑄Σ̃

−1

𝑡 ∇𝑖𝑄′𝜉𝑡𝜉
′
𝑡

)
.

∇𝜙𝑖𝜙 𝑗
𝑙𝑡 (𝜗𝑠,0) =

𝜕

𝜕𝜙 𝑗
tr

(
Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

− Σ̃−1

𝑡 Σ̃
1/2
𝑡 𝜂𝑡𝜂

′
𝑡 Σ̃

1/2′
𝑡 Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

)
= 2𝜉′𝑡 Σ̃

−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙 𝑗

Σ̃−1

𝑡 𝜉𝑡 − 𝜉′𝑡 Σ̃−1

𝑡

𝜕2Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖𝜕𝜙 𝑗

Σ̃−1

𝑡 𝜉𝑡

+ tr

(
Σ̃−1

𝑡

𝜕2Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖𝜕𝜙 𝑗

)
− tr

(
𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙 𝑗

Σ̃−1

𝑡

)
= 𝑅𝐼𝑡 + 𝑅𝐼 𝐼𝑡 + 𝑅𝐼 𝐼 𝐼𝑡 + 𝑅𝐼𝑉𝑡 .

∇𝜚𝑖𝜙 𝑗
𝑙𝑡 (𝜗𝑠,0) = −2tr

(
Σ̃−1

𝑡 (𝜉′𝑡 ⊗ 𝐼𝑁 )𝐾𝑁𝑁vec (∇𝑖𝑄) 𝜉′𝑡 Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙 𝑗

)
= −2𝜉′𝑡 Σ̃

−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙 𝑗

Σ̃−1

𝑡 (𝜉′𝑡 ⊗ 𝐼𝑁 )𝐾𝑁𝑁vec (∇𝑖𝑄) .

Note that E[∇𝜚𝑖 𝜚 𝑗
𝑙𝑡 (𝜗𝑠,0)] = E[tr

(
∇ 𝑗𝑄Σ̃

−1

𝑡 ∇𝑖𝑄′Σ̃𝑡
)
] = tr

(
∇ 𝑗𝑄∇𝑖𝑄′)

is well-defined by

Assumption (A5) and Lemma A.1, since

E sup

𝜗𝑠∈B(𝜗𝑠,0,𝛿)
|tr

(
∇ 𝑗𝑄(𝜚)Σ̃−1

𝑡 (𝜙)∇𝑖𝑄′(𝜚)Σ̃𝑡 (𝜙)
)
| ≤ 𝑁𝑀𝜎̃ sup

𝜙∈B(𝜙0,𝛿)
E[𝜎𝑡 (𝜙)] < ∞.

Moreover,

E[𝑅𝐼𝑡 ] = 2E

[
tr

(
Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙 𝑗

)]
= −2E[𝑅𝐼𝑉𝑡 ]

E[𝑅𝐼 𝐼𝑡 ] = −E
[
tr

(
Σ̃−1

𝑡

𝜕2Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖𝜕𝜙 𝑗

)]
= −E[𝑅𝐼 𝐼 𝐼𝑡 ],

and thus

E[∇𝜙𝑖𝜙 𝑗
𝑙𝑡 (𝜗𝑠,0)] =

1

2

E[𝑅𝐼𝑡 ] = E
[
vec

(
𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

)′
vec

(
Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙 𝑗

Σ̃−1

𝑡

)]
= E

[
𝜕𝜎𝑡 (𝜙0)′
𝜕𝜙𝑖

Δ𝜎

(
Σ̃−1

𝑡 ⊗ Σ̃−1

𝑡

)
Δ+
𝜎

𝜕𝜎𝑡 (𝜙0)
𝜕𝜙 𝑗

]
=
𝜕𝜎𝑡 (𝜙0)′
𝜕𝜙𝑖

𝜕𝜎𝑡 (𝜙0)
𝜕𝜙 𝑗

.

By Lemma A.3, the dominating function is integrable within a neighborhood about

𝜙0. Furthermore, E[∇𝜚𝑖𝜙 𝑗
𝑙𝑡 (𝜗𝑠,0)] = −2tr

(
𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙 𝑗

∇𝑖𝑄′
)
=

𝜕𝜎𝑡 (𝜙0)′
𝜕𝜙𝑖

Δ𝜎vec (∇𝑖𝑄′) and by

Lemma A.3,

E sup

𝜗𝑠∈B(𝜗𝑠,0,𝛿)

����tr (
𝜕Σ̃𝑡 (𝜙)
𝜕𝜙 𝑗

Σ̃−1

𝑡 (𝜙)∇𝑖𝑄′(𝜚)
)���� ≤ 𝑁𝑀𝜎̃𝑀

1/3
¤𝜎 < ∞.

Therefore, the limit is well-defined and by ergodic theorem, for any 𝑖, 𝑗 ∈ {1, . . . , 𝑑𝜗𝑠 },

sup

𝜗𝑠∈B(𝜗𝑠,0,𝛿)

����� 1𝑇 𝑇∑︁
𝑡=1

∇𝜗𝑠,𝑖𝜗𝑠, 𝑗 𝑙𝑡 (𝜗𝑠) − J𝑖, 𝑗

����� → 0,
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a.s. By Lemma A.3 and using a similar argument for the score, it can be shown that as

𝑇 → ∞, sup𝜗𝑠∈B(𝜗𝑠,0,𝛿)


∇𝜗𝑠,𝑖𝜗𝑠, 𝑗 𝑙𝑡 (𝜗𝑠) − ∇𝜗𝑠,𝑖𝜗𝑠, 𝑗 𝑙𝑡 (𝜗𝑠)



 → 0, a.s. By definition of 𝜗̂𝑠,𝑇 , the

first order condition
1√
𝑇

∑𝑇
𝑡=1

∇𝜗𝑠 𝑙𝑡 (𝜗̂𝑠,𝑇 ) = 0 is satisfied with probability approaching

one, by a mean value theorem

0 =
1

√
𝑇

𝑇∑︁
𝑡=1

∇𝜗𝑠 𝑙𝑡 (𝜗̂𝑠,𝑇 ) +
1

𝑇

𝑇∑︁
𝑡=1

∇𝜗𝑠𝜗𝑠 𝑙𝑡 (𝜗∗𝑠 )
√
𝑇 (𝜗̂𝑠,𝑇 − 𝜗𝑠,0),

where 𝜗∗𝑠 is a line segment joining 𝜗̂𝑠,𝑇 and 𝜗𝑠,0. By the results above and Theorem 2.6,

1

𝑇

∑𝑇
𝑡=1

∇𝜗𝑠𝜗𝑠 𝑙𝑡 (𝜗∗𝑠 ) → J a.s. Thus, given the reduced-form parameter 𝜗𝑟,0, as 𝑇 → ∞,

√
𝑇 (𝜗̂𝑠,𝑇 − 𝜗𝑠,0) |𝜗𝑟,0

𝑑−→ N(0,J−1IJ−1).

Denote the 𝑑𝜗𝑟 × 𝑑𝜗𝑠 expected Jacobian matrix H =

[
H𝜚𝛼 H𝜚𝜔

H𝜙𝛼 H𝜚𝜔

]
, where the typical

elements in the first 𝑑𝛼 rows are

∇𝜚𝑖𝛼𝑙𝑡 (𝜗𝑠,0) =
𝜕

𝜕𝛼′
tr

(
𝜉𝑡𝜉

′
𝑡 Σ̃

−1

𝑡 ∇𝑖𝑄′
)
=

𝜕

𝜕𝛼′
𝑢′𝑡Ω

−1/2′Σ̃−1

𝑡 ∇𝑖𝑄′Ω−1/2𝑢𝑡

= −(𝑦𝑡 − (𝑍′
𝑡−1

⊗ 𝐼𝑁 )𝜶)Ω−1/2′(∇𝑖𝑄Σ̃−1

𝑡 + Σ̃−1

𝑡 ∇𝑖𝑄′)Ω−1/2(𝑍′
𝑡−1

⊗ 𝐼𝑁 )

∇𝜙𝑖𝛼𝑙𝑡 (𝜗𝑠,0) =
𝜕

𝜕𝛼′
tr

(
−Σ̃−1

𝑡 𝜉𝑡𝜉
′
𝑡 Σ̃

−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

)
= − 𝜕

𝜕𝛼′
𝑢′𝑡Ω

−1/2′Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

Σ̃−1

𝑡 Ω−1/2𝑢𝑡

= 2(𝑦𝑡 − (𝑍′
𝑡−1

⊗ 𝐼𝑁 )𝜶)Ω−1/2′Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

Σ̃−1

𝑡 Ω−1/2(𝑍′
𝑡−1

⊗ 𝐼𝑁 )

and in the last 𝑑𝜔 rows are

∇𝜚𝑖𝜔𝑙𝑡 (𝜗𝑠,0) =
𝜕

𝜕𝜔′vec

(
𝜉𝑡𝜉

′
𝑡

)′
vec

(
Σ̃−1

𝑡 ∇𝑖𝑄′
)
= vec

(
Σ̃−1

𝑡 ∇𝑖𝑄′
)′ 𝜕vec

(
𝜉𝑡𝜉

′
𝑡

)
𝜕vech (Ω𝑡)′

∇𝜙𝑖𝜔𝑙𝑡 (𝜗𝑠,0) =
𝜕

𝜕𝜔′vec

(
𝜉𝑡𝜉

′
𝑡

)′
vec

(
−Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

Σ̃−1

𝑡

)
= −vec

(
Σ̃−1

𝑡

𝜕Σ̃𝑡 (𝜙0)
𝜕𝜙𝑖

Σ̃−1

𝑡

)′
𝜕vec

(
𝜉𝑡𝜉

′
𝑡

)
𝜕vech (Ω𝑡)′

,

where

𝜕vec

(
𝜉𝑡𝜉

′
𝑡

)
𝜕vech (Ω𝑡)′

=

𝜕vec

(
Ω−1/2𝑢𝑡𝑢′𝑡Ω

−1/2′
)

𝜕vech (Ω𝑡)′
= (𝐼𝑁2 ⊗ 𝐾𝑁𝑁 ) (Ω−1/2𝑢𝑡 ⊗ 𝐼𝑁 ) (𝑢′𝑡 ⊗ 𝐼𝑁 )

𝜕vec

(
Ω−1/2

)
𝜕vech (Ω𝑡)′

= −4𝑁𝑁 (Ω−1/2𝑢𝑡 ⊗ 𝐼𝑁 ) (𝑢′𝑡 ⊗ 𝐼𝑁 )𝑁𝑁 (Ω−1/2 ⊗ 𝐼𝑁 ) (Ω−1 ⊗ Ω−1)𝐷𝑁 ,

with 𝑁𝑁 being a symmetric idempotent matrix such that 𝑁𝑁 = 1

2
(𝐼𝑁2 + 𝐾𝑁𝑁 ). If

the matrix-root Ω−1/2
is chosen to be symmetric, then 𝑁𝑁 = 𝐾𝑁𝑁 = 𝐼𝑁2 and the

terms simplify to −4(Ω−1/2𝑢𝑡𝑢′𝑡Ω
−1/2 ⊗ 𝐼𝑁 ) (Ω−1 ⊗Ω−1)𝐷𝑁 . Thus, H𝜚𝛼 = 0𝑑𝜚×𝑑𝛼 , H𝜙𝛼 =

0𝑑𝜙×𝑑𝛼 and typical elements in H𝜚𝜔 and H𝜙𝜔 are −4vec (∇𝑖𝑄′)′ (Ω−1 ⊗ Ω−1)𝐷𝑁 and

4
𝜕𝜎𝑡 (𝜙0)′
𝜕𝜙𝑖

Δ𝜎 (Ω−1 ⊗ Ω−1)𝐷𝑁 , respectively.
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The score functions for the reduced-form estimator 𝜗̂𝑟,𝑇 are

∇𝜶𝑔𝑡 (𝜗𝑟) = 2(𝑦𝑡 − (𝑍′
𝑡−1

⊗ 𝐼𝑁 )𝜶)′Ω−1(𝑍′
𝑡−1

⊗ 𝐼𝑁 )

∇𝜔𝑔𝑡 (𝜗𝑟) = vec

(
Ω−1𝑢𝑡𝑢

′
𝑡Ω

−1

)′
𝐷𝑁 − vec

(
Ω−1

)′
𝐷𝑁 ,

and the expected Hessian matrix at 𝜗𝑟,0 is G =

[
G𝛼𝛼 G𝛼𝜔
G′
𝛼𝜔 G𝜔𝜔

]
, where

G𝛼𝛼 = E[∇𝛼𝛼𝑔𝑡 (𝜗𝑟,0)] = −2E[(𝑍𝑡−1 ⊗ 𝐼𝑁 )Ω−1 [(𝑍′
𝑡−1

⊗ 𝐼𝑁 )] = −2E[𝑍𝑡−1𝑍
′
𝑡−1

] ⊗ Ω−1

G𝜔𝜔 = E[∇𝜔𝜔𝑔𝑡 (𝜗𝑟,0)] = 𝐷′
𝑁E

[(
(𝐼𝑁 ⊗ Ω−1𝑢𝑡𝑢

′
𝑡) + (Ω−1𝑢𝑡𝑢

′
𝑡 ⊗ 𝐼𝑁 ) − 𝐼𝑁2

) 𝜕vec

(
Ω−1

)
𝜕vec (Ω𝑡)′

]
𝐷𝑁

= 𝐷′
𝑁

𝜕vec

(
Ω−1

)
𝜕vec (Ω𝑡)′

𝐷𝑁 = −𝐷′
𝑁 (Ω−1 ⊗ Ω−1)𝐷𝑁

G𝛼𝜔 = E[∇𝛼𝜔𝑔𝑡 (𝜗𝑟,0)] = 0𝑑𝛼×𝑑𝜔 .

LetW𝜚𝜔 = E[∇𝜚𝑙𝑡 (𝜗𝑠,0)∇𝜔𝑔𝑡 (𝜗𝑟,0)′],W𝜙𝜔 = E[∇𝜙𝑙𝑡 (𝜗𝑠,0)∇𝜔𝑔𝑡 (𝜗𝑟,0)′] and define 𝑑𝜗𝑠×𝑑𝜔
matrix W𝜔 = [W′

𝜚𝜔 W′
𝜙𝜔
]′. Therefore,

√
𝑇 (𝜗̂𝑠,𝑇 − 𝜗𝑠,0)

𝑑−→ N(0, 𝑉),

with the asymptotic covariance matrix given by (see also Theorem 6.1 in Newey and

McFadden 1994)

𝑉 = J−1E
[(
∇𝜗𝑠 𝑙𝑡 (𝜗𝑠,0) − HG−1∇𝜗𝑟𝑔𝑡 (𝜗𝑟,0)

) (
∇𝜗𝑠 𝑙𝑡 (𝜗𝑠,0) − HG−1∇𝜗𝑟𝑔𝑡 (𝜗𝑟,0)

)′]
J−1,

where

∇𝜗𝑠 𝑙𝑡 (𝜗𝑠,0) − HG−1∇𝜗𝑟𝑔𝑡 (𝜗𝑟,0) =
[
∇𝜚𝑙𝑡 (𝜗𝑠,0)
∇𝜙𝑙𝑡 (𝜗𝑠,0)

]
−

[
0𝑑𝜚×𝑑𝛼 H𝜚𝜔

0𝑑𝜙×𝑑𝛼 H𝜙𝜔

] [
G−1

𝛼𝛼∇𝛼𝑔𝑡 (𝜗𝑟,0)
G−1

𝜔𝜔∇𝜔𝑔𝑡 (𝜗𝑟,0)

]
=

[
∇𝜚𝑙𝑡 (𝜗𝑠,0) − H𝜚𝜔G−1

𝜔𝜔∇𝜔𝑔𝑡 (𝜗𝑟,0)
∇𝜙𝑙𝑡 (𝜗𝑠,0) − H𝜙𝜔G−1

𝜔𝜔∇𝜔𝑔𝑡 (𝜗𝑟,0)

]
.

Denote the last 𝑑𝜔 columns of matrix H by H, we have

𝑉 = J−1

(
I −W𝜔𝐺

−1

𝜔𝜔H ′
𝜔 −H𝜔𝐺

−1

𝜔𝜔W′
𝜔 +W𝜔𝑉𝜔𝜔W′

𝜔

)
J−1,

where the asymptotic covariance matrix of 𝜔̂𝑇 is given by (see Thm.2.1 in Brügge-

mann et al. 2016)

𝑉𝜔𝜔 = 𝐺−1

𝜔𝜔

∞∑︁
𝑗=−∞

Cov

(
𝐷′
𝑁vec

(
Ω−1𝑢𝑡𝑢

′
𝑡Ω

−1

)
− 𝐷′

𝑁vec

(
Ω−1

)
,
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vec

(
Ω−1𝑢𝑡− 𝑗𝑢

′
𝑡− 𝑗Ω

−1

)′
𝐷′
𝑁 − vec

(
Ω−1

)′
𝐷′
𝑁

)
𝐺−1

𝜔𝜔

= 𝐷+
𝑁

( ∞∑︁
𝑗=−∞
E

[
vec

(
𝑢𝑡𝑢

′
𝑡

)
vec

(
𝑢𝑡− 𝑗𝑢

′
𝑡− 𝑗

)′]
− vec (Ω) vec (Ω)′

)
𝐷+
𝑁
′.

This completes the proof. □

Lemma A.1. There exist 0 < 𝑀𝜎, 𝑀𝜎̃, 𝑀𝜎′ < ∞, 𝜓𝜎 ∈ [0, 1), s.t.,

sup

𝜙∈𝛷
∥Σ−1

𝑡 (𝜙)∥ ≤ 𝑀𝜎, sup

𝜙∈𝛷
∥Σ̃−1

𝑡 (𝜙)∥ ≤ 𝑀𝜎̃, and sup

𝜙∈𝛷
∥Σ̃𝑡 (𝜙) − Σ𝑡 (𝜙)∥ ≤ 𝜓𝑡𝜎𝑀𝜎′ , a.s.

Proof. Note that ∥Σ−1

𝑡 (𝜙)∥ = 𝜌1/2(Σ−1

𝑡 (𝜙)Σ−1

𝑡 (𝜙)) = max 𝑗∈{1,...,𝑁} 𝜎
−1

𝑗 𝑡
(𝜙) = 𝜎𝑡

−1(𝜙)
and similarly, ∥Σ̃−1

𝑡 (𝜙)∥ = 𝜎̃𝑡
−1(𝜙), where 𝜎̃𝑡 (𝜙) is defined analogously. Since the

parameter space 𝛷 is compact and 𝜎𝑡 , 𝜎̃𝑡 are positive definite and continuous in

𝜙, there exists 𝑀−1

𝜎 , 𝑀
−1

𝜎̃
∈ R+, s.t. for all 𝑡, 0 < 𝑀−1

𝜎 ≤ inf𝜙∈𝛷 𝜎𝑡 (𝜙) < ∞ and

0 < 𝑀−1

𝜎̃
≤ inf𝜙∈𝛷 𝜎̃𝑡 (𝜙) < ∞. To show sup𝜙∈𝛷 ∥Σ̃𝑡 (𝜙) − Σ𝑡 (𝜙)∥ ≤ 𝜓𝑡𝜎𝑀𝜎′ , note that by

recursive substitutions of model (2.7), we have

𝜎𝑡 = Γ𝑡
1
𝜎0 +

𝑡−1∑︁
𝑖=0

[
Γ𝑖

1
(𝛾0 + 𝐺1(𝜉𝑡−𝑖−1 ⊙ 𝜉𝑡−𝑖−1)

]
.

Thus,

∥Σ̃𝑡 (𝜙) − Σ𝑡 (𝜙)∥ ≤ ∥Δ+
𝜎∥∥𝜎̃𝑡 (𝜙) − 𝜎𝑡 (𝜙)∥ ≤ ∥Γ𝑡

1
(𝜙)∥∥𝜎̃0 − 𝜎0∥,

since ∥Δ+
𝜎∥ = 1. Choose 𝜓𝜎 := sup𝜙∈𝛷 𝜌(Γ1(𝜙)) ∈ [0, 1) and define constant 𝑀𝜎′ :=

∥𝜎̃0 − 𝜎0∥, which completes the proof. □

Lemma A.2. For any 𝛿 > 0, there exists an open ball B(𝜗𝑠,0, 𝛿), s.t.,

inf

𝜗𝑠∈B(𝜗𝑠,0,𝛿)𝑐∩𝛩𝑠

E
[
𝑙𝑡 (𝜗𝑠)

]
− E

[
𝑙𝑡 (𝜗𝑠,0)

]
> 0

Proof. We start by showing that the population objective function is well-defined

at the true-parameter 𝜗𝑠,0. Note that 𝜀′𝑡𝑄(𝜚0)Σ𝑡 (𝜙0)−1𝑄(𝜚0)′𝜀𝑡 = 𝜂′𝑡𝜂𝑡 , by Jensen’s

inequality and Assumption (A2),

E
[
𝑙𝑡 (𝜗𝑠,0)

]
= E[log |Σ𝑡 (𝜙0) |] + E[𝜂′𝑡𝜂𝑡] ≤

1

𝑠
E

log

𝑁∏
𝑗=1

𝜎𝑠𝑗𝑡

 + E∥𝜂𝑡 ∥2

≤ 1

𝑠
logE[(𝜎𝑡 𝑠)𝑁 ] + E∥𝜂𝑡 ∥2 < ∞.
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Since in case E
[
𝑙𝑡 (𝜗𝑠)

]
= +∞ the inequality holds trivially, we assume that the

population objective function is finite and show E
[
𝑙𝑡 (𝜗𝑠)

]
> −∞ everywhere on 𝛩𝑠.

Since |Σ̃𝑡 (𝜙) |−1 =

(∏𝑁
𝑗=1
𝜎̃𝑗 𝑡 (𝜙)

)−1

≤ 𝜎̃𝑡−1(𝜙) ≤ 𝑀𝑁
𝜎̃
< ∞ by Lemma A.1 and due to the

elementary relation ( 𝑓1 + 𝑓2)− ≤ 𝑓 −
1

if 𝑓2 ≥ 0, we have

E
[
𝑙−𝑡 (𝜗𝑠)

]
= E

[(
(𝑄(𝜚)′𝜀𝑡)′Σ𝑡 (𝜙)−1(𝑄(𝜚)′𝜀𝑡) + log |Σ̃𝑡 (𝜙) |

)−]
≤ E

[
log

− |Σ̃𝑡 (𝜙) |
]
< ∞.

Furthermore, for any 𝜗𝑠 ∈ 𝛩𝑠,

E
[
𝑙𝑡 (𝜗𝑠)

]
− E

[
𝑙𝑡 (𝜗𝑠,0)

]
= E[log |Σ̃𝑡 (𝜙) | − log |Σ̃𝑡 |] + E[𝜉′𝑡 Σ̃−1

𝑡 (𝜙)𝜉𝑡 − 𝜉′𝑡 Σ̃−1

𝑡 𝜉𝑡]

+ E[𝜉𝑡 (𝜚)′Σ̃−1

𝑡 (𝜙)𝜉𝑡 (𝜚) − 𝜉′𝑡 Σ̃−1

𝑡 (𝜙)𝜉𝑡]

= E[log |Σ̃𝑡 (𝜙)Σ̃−1

𝑡 |] + E[𝜉′𝑡 (Σ̃−1

𝑡 (𝜙) − Σ̃−1

𝑡 )𝜉𝑡] + E
[
tr

(
Σ̃−1

𝑡 (𝜙) (𝜉𝑡 (𝜚)𝜉𝑡 (𝜚)′ − 𝜉𝑡𝜉′𝑡 )
)]

:= (𝐼) + (𝐼 𝐼) + (𝐼 𝐼 𝐼),

where the parameter dependence of Σ𝑡 and 𝜉𝑡 at the true value 𝜗𝑠,0 is suppressed to

simplify the notation. For all 𝑡 and 𝑖, 𝑗 ∈ {1, . . . , 𝑁}, define 𝜆𝑖 𝑗 ,𝑡 (𝜗𝑠) = 𝜎̃𝑖𝑡/𝜎̃𝑗 𝑡 (𝜗𝑠) with

inf𝜗𝑠∈𝛩𝑠
𝜆𝑖 𝑗 ,𝑡 (𝜗𝑠) > 0. Then,

(𝐼) + (𝐼 𝐼) = E
[
tr

(
Σ̃−1

𝑡 (𝜙)Σ̃𝑡 − 𝐼𝑁
)
− log |Σ̃𝑡 Σ̃−1

𝑡 (𝜙) |
]
= E


𝑁∑︁
𝑗=1

(
𝜆 𝑗 𝑗 ,𝑡 (𝜗𝑠) − 1 − log𝜆 𝑗 𝑗 ,𝑡 (𝜗𝑠)

) .
Furthermore, (𝐼 𝐼 𝐼) := E

[∑𝑁
𝑗=1

(
𝜆 𝑗 𝑗 ,𝑡 (𝜗𝑠)𝑞2

𝑗 𝑗
(𝜚) + ∑

𝑖≠ 𝑗 𝜆𝑖 𝑗 ,𝑡 (𝜗𝑠)𝑞2

𝑖 𝑗
(𝜚) − 𝜆 𝑗 𝑗 ,𝑡 (𝜗𝑠)

)]
with

𝑞𝑖 𝑗 (𝜚) = 𝑒′𝑖𝑄(𝜚)𝑒 𝑗 . Therefore,

E
[
𝑙𝑡 (𝜗𝑠)

]
− E

[
𝑙𝑡 (𝜗𝑠,0)

]
= E


𝑁∑︁
𝑗=1

(
𝜆 𝑗 𝑗 ,𝑡 (𝜗𝑠)𝑞2

𝑗 𝑗 (𝜚) +
∑︁
𝑖≠ 𝑗

𝜆𝑖 𝑗 ,𝑡 (𝜗𝑠)𝑞2

𝑖 𝑗 (𝜚) − 1 − log𝜆 𝑗 𝑗 ,𝑡 (𝜗𝑠)
) .

where 𝜆 𝑗 𝑗 ,𝑡 (𝜗𝑠)𝑞2

𝑗 𝑗
(𝜚) +∑

𝑖≠ 𝑗 𝜆𝑖 𝑗 ,𝑡 (𝜗𝑠)𝑞2

𝑖 𝑗
is minimized if each column in𝑄(𝜚) contains

only one non-zero element ±1, i.e., 𝑄(𝜚) = 𝑄PD and 𝜚 = 𝜚0 given the identifiability

assumption. Without loss of generality, choose the permutation 𝑞2

𝑗 𝑗
= 1 and 𝑞2

𝑖 𝑗
= 0

for 𝑖 ≠ 𝑗 , then 𝜆 𝑗 𝑗 ,𝑡 (𝜗𝑠)𝑞2

𝑗 𝑗
(𝜚) + ∑

𝑖≠ 𝑗 𝜆𝑖 𝑗 ,𝑡 (𝜗𝑠)𝑞2

𝑖 𝑗
(𝜚) = 𝜆 𝑗 𝑗 ,𝑡 (𝜗𝑠) for all 𝑗 , and

E
[
𝑙𝑡 (𝜗𝑠)

]
− E

[
𝑙𝑡 (𝜗𝑠,0)

]
= E


𝑁∑︁
𝑗=1

(
𝜆 𝑗 𝑗 ,𝑡 (𝜗𝑠) − 1 − log𝜆 𝑗 𝑗 ,𝑡 (𝜗𝑠)

) ≥ 0

by the elementary relation 𝑥 − 1 ≥ log 𝑥 on R+ with the equality applicable if and

only if 𝜆 𝑗 𝑗 ,𝑡 (𝜗𝑠) − 1 = 0 for all 𝑗 and all 𝑡, a.s., which in turn implies Σ̃−1

𝑡 (𝜙)Σ̃𝑡 = 𝐼𝑁

and Σ̃𝑡 = Σ̃𝑡 (𝜙), ∀𝑡 and thus 𝜙 = 𝜙0 given the identifiability. Therefore, the inequality

holds strictly for all 𝜗𝑠 ∈ B(𝜗𝑠,0, 𝛿)𝑐 ∩𝛩𝑠 with 𝛿 > 0. □
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Lemma A.3. For some 𝑠 > 1, there exists an open neighborhood B(𝜙0, 𝛿), such that

E

[
sup

𝜙∈B(𝜙0,𝛿)
∥Σ̃−1/2

𝑡 (𝜙)Σ̃1/2
𝑡 (𝜙0)∥2𝑠

]
< ∞,

and for any 𝑖, 𝑗 ∈ {1, . . . , 𝑑𝜙},

E

[
sup

𝜙∈B(𝜙0,𝛿)





Σ̃−1/2
𝑡 (𝜙) 𝜕Σ̃𝑡 (𝜙)

𝜕𝜙𝑖
Σ̃
−1/2′
𝑡 (𝜙)





2𝑠
]
< ∞, E

[
sup

𝜙∈B(𝜙0,𝛿)





Σ̃−1/2
𝑡 (𝜙) 𝜕

2Σ̃𝑡 (𝜙)
𝜕𝜙𝑖𝜕𝜙 𝑗

Σ̃
−1/2′
𝑡 (𝜙)





2𝑠
]
< ∞.

Proof. First, by Assumption (A5),

E

[
sup

𝜙∈B(𝜙0,𝛿)
∥Σ̃−1/2

𝑡 (𝜙)Σ̃1/2
𝑡 (𝜙0)∥2𝑠

]
≤ E

[
sup

𝜙∈B(𝜙0,𝛿)
𝜌(Σ̃−1

𝑡 (𝜙))𝑠𝜌(Σ̃𝑡 (𝜙0))𝑠
]

≤ E
[

sup

𝜙∈B(𝜙0,𝛿)
tr

(
Σ̃−1

𝑡 (𝜙)
) 𝑠

tr

(
Σ̃𝑡 (𝜙0)

) 𝑠]
≤ E

[
sup

𝜙∈B(𝜙0,𝛿)
𝑁2𝑠∥Σ̃−1

𝑡 (𝜙)∥𝑠∥Σ̃𝑡 (𝜙0)∥𝑠
]
≤ 𝑁2𝑠𝑀 𝑠

𝜎̃E[𝜎𝑡
𝑠 (𝜙0)] < ∞,

with constant 𝑀 𝑠
𝜎̃

defined analogously as in Lemma A.1 and 𝑀 𝑠
𝜎̃
< ∞ due to the

compactness of the parameter space. Moreover, under Assumption (A5), there

exists 0 < 𝑀 ¤𝜎, 𝑀 ¥𝜎 < ∞, s.t., for any 𝑖, 𝑗 ∈ {1, . . . , 𝑑𝜙},

E

[
sup

𝜙∈B(𝜙0,𝛿)





𝜕Σ̃𝑡 (𝜙)𝜕𝜙𝑖





3

]
≤ 𝑀 ¤𝜎 and E

[
sup

𝜙∈B(𝜙0,𝛿)





𝜕2Σ̃𝑡 (𝜙)
𝜕𝜙𝑖𝜕𝜙 𝑗





3

]
≤ 𝑀 ¥𝜎, (A.1)

by Lemma 3 in Hafner and Preminger (2009b). Thus, for any 1 < 𝑠 ≤ 3/2,

E

[
sup

𝜙∈B(𝜙0,𝛿)





Σ̃−1/2
𝑡 (𝜙) 𝜕Σ̃𝑡 (𝜙)

𝜕𝜙𝑖
Σ̃
−1/2′
𝑡 (𝜙)





2𝑠
]
≤ E

 sup

𝜙∈B(𝜙0,𝛿)
2𝑁 𝑠∥Σ̃−1

𝑡 (𝜙)∥𝑠
(



𝜕Σ̃𝑡 (𝜙)𝜕𝜙𝑖





3

)
2𝑠/3

≤ 2𝑁 𝑠𝑀 𝑠
𝜎̃𝑀

2𝑠/3
¤𝜎 < ∞,

by Lemma A.1 and Jensen’s inequality and

E

[
sup

𝜙∈B(𝜙0,𝛿)





Σ̃−1/2
𝑡 (𝜙) 𝜕

2Σ̃𝑡 (𝜙)
𝜕𝜙𝑖𝜕𝜙 𝑗

Σ̃
−1/2′
𝑡 (𝜙)





2𝑠
]
≤ E

 sup

𝜙∈B(𝜙0,𝛿)
2𝑁 𝑠∥Σ̃−1

𝑡 (𝜙)∥𝑠
(



𝜕2Σ̃𝑡 (𝜙)
𝜕𝜙𝑖𝜕𝜙 𝑗





3

)
2𝑠/3

≤ 2𝑁 𝑠𝑀 𝑠
𝜎̃𝑀

2𝑠/3
¥𝜎 < ∞,

which completes the proof. □
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